E. coli Extract Total
* Please be kindly noted products are not for therapeutic use. We do not sell to patients.
Category | Extracts |
Catalog NO. | BPG-3245 |
Product Name | E. coli Extract Total |
CAS | 1240502-50-4 |
- Scheme Design
- Custom Synthesis
- cGMP Manufacturing
- Quality Assurance
- Product Information
- Application
- References
- Documents
- Reviews
Description | It is isolated from E. coli B. |
Synonyms | E. coli Total Lipid Extract |
Appearance | Powder |
Shelf Life | 1 Year |
Storage | Store at -20°C |
Hygroscopic | Yes |
Light Sensitive | No |
E. coli Extract Total, a versatile biological reagent derived from Escherichia coli, finds widespread application in both scientific and industrial realms. Here we explore four key applications of E. coli Extract Total, presented with a high degree of perplexity and burstiness: Protein Expression: Within the realm of cell-free protein synthesis systems, E. coli Extract Total emerges as a pivotal player, facilitating the production of recombinant proteins with speed and efficiency. This system stands out for its ability to generate proteins rapidly, circumventing the need for living cells. Researchers leverage this method to produce proteins with toxic properties or intricate folding demands, showcasing its versatility in addressing diverse protein synthesis challenges. Molecular Biology Research: Serving as a rich wellspring of enzymes and factors essential for DNA and RNA manipulation, E. coli Extract Total emerges as a linchpin in molecular biology research. This biological extract furnishes the critical components necessary for executing techniques like polymerase chain reactions (PCR), DNA cloning, and in vitro transcription. Such qualities position it as an indispensable ally in the realms of genetic engineering and the development of molecular diagnostics, underscoring its significance in advancing biological research. Enzyme Assays: By stepping into the realm of biochemical assays, E. coli Extract Total becomes a valuable asset for deciphering enzyme kinetics and activity. Creating a controlled experimental environment replete with vital cofactors and substrates, this extract forms the bedrock for studying catalytic mechanisms and the effects of inhibitors. These assays play a pivotal role in driving drug discovery efforts and enhancing the development of enzyme-centric industrial processes, spotlighting the extract's critical role in advancing the frontiers of biochemical research. Metabolomics Studies: In the vibrant field of metabolomics, E. coli Extract Total assumes a pivotal role in elucidating bacterial metabolism and its responses to varied environmental conditions. By delving deep into metabolic pathways and dissecting the impacts of external stimuli such as antibiotics or environmental stressors, researchers gain invaluable insights into bacterial physiology. This heightened understanding not only aids in combating antibiotic resistance, but also lays the foundation for devising strategic interventions to modulate bacterial metabolic responses, underscoring the extract's pivotal role in shaping the future of metabolomics research. |
References | 1. Kumar A, Russell RM, Pifer R, Menezes-Garcia Z, Cuesta S, Narayanan S, MacMillan JB, Sperandio V. The Serotonin Neurotransmitter Modulates Virulence of Enteric Pathogens. Cell Host Microbe. 2020 Jul 8;28(1):41-53.e8. doi: 10.1016/j.chom.2020.05.004. Epub 2020 Jun 9. PMID: 32521224; PMCID: PMC7351610. PubMed ID: 32521224. 2. Chattrakun K, Hoogerheide DP, Mao C, Randall LL, King GM. Protein Translocation Activity in Surface-Supported Lipid Bilayers. Langmuir. 2019 Sep 17;35(37):12246-12256. doi: 10.1021/acs.langmuir.9b01928. Epub 2019 Sep 6. Erratum in: Langmuir. 2020 May 26;: PMID: 31448613. PubMed ID: 31448613. 3. Matin TR, Utjesanovic M, Sigdel KP, Smith VF, Kosztin I, King GM. Characterizing the Locus of a Peripheral Membrane Protein-Lipid Bilayer Interaction Underlying Protein Export Activity in E. coli. Langmuir. 2020 Mar 3;36(8):2143-2152. doi: 10.1021/acs.langmuir.9b03606. Epub 2020 Feb 18. PMID: 32011890. PubMed ID: 32011890. 4. Reddy B, Bavi N, Lu A, Park Y, Perozo E. Molecular basis of force-from-lipids gating in the mechanosensitive channel MscS. Elife. 2019 Dec 27;8:e50486. doi: 10.7554/eLife.50486. PMID: 31880537. PubMed ID: 31880537. 5. Liu S, Fukumoto T, Gena P, Feng P, Sun Q, Li Q, Matsumoto T, Kaneko T, Zhang H, Zhang Y, Zhong S, Zeng W, Katsuhara M, Kitagawa Y, Wang A, Calamita G, Ding X. Ectopic expression of a rice plasma membrane intrinsic protein (OsPIP1;3) promotes plant growth and water uptake. Plant J. 2019 Dec 23;10.1111/tpj.14662. doi: 10.1111/tpj.14662. [Epub ahead of print]. PMID: 31872463. PubMed ID: 31872463. 6. Teixeira-Duarte CM, Fonseca F, Morais-Cabral JH. Activation of a nucleotide-dependent RCK domain requires binding of a cation cofactor to a conserved site. Elife. 2019 Dec 23;8:e50661. doi: 10.7554/eLife.50661. PMID: 31868587; PMCID: PMC6957272. PubMed ID: 31868587. 7. Duša F, Chen W, Witos J, Rantamäki AH, King AWT, Sklavounos E, Roth M, Wiedmer SK. Immobilization of natural lipid biomembranes and their interactions with choline carboxylates. A nanoplasmonic sensing study. Biochim Biophys Acta Biomembr. 2020 Feb 1;1862(2):183115. doi: 10.1016/j.bbamem.2019.183115. Epub 2019 Nov 5. PubMed ID: 31704086. 8. Patiño-Ruiz M, Fendler K, Călinescu O. Mutation of two key aspartate residues alters stoichiometry of the NhaB Na+/H+ exchanger from Klebsiella pneumoniae. Sci Rep. 2019 Oct 28;9(1):15390. doi: 10.1038/s41598-019-51887-2. PubMed ID: 31659210. 9. Sasaki M, Nishikawa H, Suzuki S, Moser M, Huber M, Sawasato K, Matsubayashi HT, Kumazaki K, Tsukazaki T, Kuruma Y, Nureki O, Ueda T, Nishiyama KI. The bacterial protein YidC accelerates MPIase-dependent integration of membrane proteins. J Biol Chem. 2019 Dec 6;294(49):18898-18908. doi: 10.1074/jbc.RA119.011248. Epub 2019 Oct 29. PubMed ID: 31662434. 10. Kumar S, Mahendran I, Athreya A, Ranjan R, Penmatsa A. Isolation and structural characterization of a Zn2+-bound single-domain antibody against NorC, a putative multidrug efflux transporter in bacteria. J Biol Chem. 2020 Jan 3;295(1):55-68. doi: 10.1074/jbc.RA119.010902. Epub 2019 Nov 7. PubMed ID: 31699895. |
Reviews
If you have any suggestions or comments about mPEG-Br, please submit a review immediately.
Why BOC Sciences?
-
Large Stock
More than 2000+ products in inventory
-
Global Delivery
Warehouses in multiple cities to ensure fast delivery
-
mg to kg
Multi specification for academic research and industrial production
-
24/7 Technical Support
Strict process parameter control to ensure product quality
Products
- Lipids
- PEG Derivatives by Structure
-
PEG Derivatives by Functional Group
- Acrylate/Acrylamide/Methacrylate PEG
- Aldehyde (Ald/CHO)PEG
- Alkyne PEG
- Amino PEG, PEG amine(-NH2)
- Azide PEG, Azido PEG(-N3)
- Biotin PEG
- Boc/Fmoc protected amine PEG
- Carboxylic Acid(-COOH) PEG
- Cholesterol PEG
- DBCO PEG
- DNP PEG
- DSPE PEG
- Epoxide glycidyl ether PEG
- FITC PEG
- Folate PEG
- Halide (chloride, bromide) PEG
- Hydrazide PEG
- Hydroxyl(-OH) PEG
- Maleimide(-MAL) PEG
- NHS ester PEG
- Nitrophenyl carbonate (NPC) PEG
- Norbornene PEG
- Olefin/Alkene/Vinyl PEG
- Orthopyridyl disulfide (OPSS) PEG
- Phosphate PEG
- Rhodamine PEG
- SCM PEG
- Silane PEG
- SPDP PEG
- Sulfonate (tosyl, mesyl, tresyl) PEG
- tert-Butyl protected carboxylate PEG
- Thiol(-SH) PEG
- Vinylsulfone PEG
- PEG Copolymers
-
PEG Raw Materials
- Small-molecule Polyethylene Glycol
- Polyethylene Glycol 1000
- Polyethylene Glycol 10000
- Polyethylene Glycol 1500
- Polyethylene Glycol 200
- Polyethylene Glycol 2000
- Polyethylene Glycol 20000
- Polyethylene Glycol 400
- Polyethylene Glycol 4000
- Polyethylene Glycol 600
- Polyethylene Glycol 6000
- Polyethylene Glycol 800
- Polyethylene Glycol 8000
Resources
-
Technical Information
- Aqueous Two-Phase System (ATPS) Technique
- Capillary Electrophoresis (CE) Technique
- Enzyme-linked immunosorbent assay (ELISA) Technique
- High performance liquid chromatography (HPLC) Technique
- How to Perform Polyethylene Glycol (PEG) Modification?
- Hydrophobic Interaction Chromatography (HIC) Technique
- Introduction of Polyethylene Glycol (PEG)
- Ion Exchange Chromatography (IEX) Technique
- PEG for Chemical Synthesis
- PEG for Cosmetic Application
- PEG for Drug Delivery
- PEG for Imaging Diagnosis
- PEG for Pharmaceutical Preparation
- PEG for Tissue Engineering
- PEG Purification Techniques of Plasmid DNA
- PEGylated Protein Purification Techniques
- Polyethylene Glycol (PEG) Modifier Selection Guide
- Radiolabeling Technique
- SDS-PAGE Technique
- Size Exclusion Chromatography (SEC) Technique
- Ultrafiltration Technique
-
Industry News
- Applications of PEG-DSPE: Drug Carriers and Drug Delivery
- Applications of Polyethylene Glycol (PEG) as Medical Devices
- Cholesterol: Definition, Structure, Synthesis, Types and Functions
- Classification of Lipid-Based Vaccine Adjuvants
- FDA approved PEGylated Products
- FDA-Approved Antibody-Drug Conjugates up to 2024
- How are Liposomes Different from Micelles?
- How Lipid Nanoparticles (LNPs) Deliver RNA Drugs?
- Hyaluronic Acid & PEGylated Hyaluronic Acid
- Ionizable Lipids for RNA Delivery
- Lipid Classification and Drug Delivery Systems
- Lipid Formulations: Key Absorption-Enhancing Technologies in New Drug Development
- Lipid-Drug Conjugates (LDCs) for Nanoparticle Drug Delivery
- Liposome in Drug Delivery
- Overview of Liposome Preparation Process
- PEG in Pharmaceutical Preparations (I): Solvents, Lubricants, Adhesives and More
- PEG in Pharmaceutical Preparations (II): Stabilizers, Plasticizers and Modification Materials
- PEG Linkers in Antibody Drug Conjugates and PROTACs
- PEG-DSPE Block Copolymers and Their Derivatives
- PEGylated Drugs: Definition, Structure, Classification and Benefits
- PEGylated RGD Peptides: A Promising Tool for Targeted Drug Delivery
- Pharmacokinetics and Bioanalysis of PEGylated Drugs
- Polyethylene Glycol (PEG) Modified Targeting Nanomaterials
- Preparation Method of PEG Hydrogel
- The PROTAC Technology in Drug Development
- Vaccines: Definition, History, Ingredients, Types and Mechanism of Action
- What are Lipid Excipients and Their Applications?
- What are Lipid Nanoparticles and Their Applications?
- What are Lipid-Drug Conjugates (LDCs)?
- What are Lipids?
- What are Monodispersed and Polydispersed PEGs?
- What are PEG Lipids?
- What are Phospholipids?
- What are Sterols? - Definition, Structure, Function, Examples and Uses
- What is Biotinylation and Biotinylated PEG?
- What is Click Chemistry?
- What is Hydrogel?
- What is Methoxy Polyethylene Glycol (mPEG)?
- What is Nanogels and Its Applications?
- What is the Formulation of Lipid Nanoparticles (LNPs)?
Our Feature
BOC Sciences supplies a unique variety of PEG derivatives and functional PEG polymers. Our products offer the most diverse collection of reactivity, ready-to-use functionality, and molecular weight options that you will not find anywhere else.
PEGylation of Peptides
and Proteins
Reduce the Immunogenicity of Peptide/Protein Drugs
Learn More
APPLICATIONS
PEG linkers For Drug
Improved Circulation Half-Life
Learn More
Have Customer Reviewed On Us?
Chat With Us