PEGylation of Peptides and Proteins
Because peptides/protein-based drugs have strong immunogenicity, when they are used in the body, they will trigger the production of antibodies, which will reduce the efficacy and even cause allergic reactions. Therefore, researchers try to use soluble inert polymers, such as polyethylene glycol (PEG), combined with peptides/proteins to solve the dilemma, which can not only reduce its immunogenicity, but also can extend its half-life and retain its biological activity. PEGylation is a popular technology gradually developed in the late 1970s. At present, there are more than ten kinds of PEGylated protein drugs on the market with excellent clinical medical effects.
Principles
PEG contains a large number of ethoxy groups, which can form hydrogen bonds with water, has a high degree of hydrophilicity, and has a large hydrodynamic volume in an aqueous solution. It can change the biological distribution behavior of drugs in the aqueous solution and create a space barrier around the modified drugs to protect drugs from enzymatic hydrolysis, avoiding rapid elimination in the metabolism of the kidney. PEG is immunologically inert, even if its molecular weight (Mw) is as high as 5.9×106 Da, its immunogenicity is also very low. When using PEGylated protein in clinical treatment, no anti-PEG antibody was found. PEG is one of the few synthetic polymers approved by the Food and Drug Administration (FDA) that can be used for injectable medicine in the body.
Fig. 1 Several explanations on why PEG increases the stealth of nanocarriers. (Journal of Biomedical Nanotechnology 2008, 4 (2), 133-148.
Our services include but not limited as following:
Site-selective PEGylation
- N-terminal PEGylation
Fig. 2 Illustration of N-terminal PEGylation. (Journal of controlled release 2014, 192, 67-81)
Site-selective PEGylation of N-terminal amino groups can be performed by simple adjustment of reaction pH to acidic condition where the lysine will be protonated. For this purpose, PEG aldehydes with low reactivity were preferred to minimize amount of lysine conjugate.
- Thiol and bridging PEGylation
Fig. 3 Illustration of thiol and bridging PEGylation. (Journal of controlled release 2014, 192, 67-81)
PEG maleimide is the most commonly used reactive PEGylating agent for thiol PEGylation. A thioether bond can be formed by Michael's addition between the double bond of the maleimide ring and the thiol group of cysteine. In addition, another method based on use of specific cross-functionalized mono-sulfone PEG derivative containing double bond was developed, which can react first with one of the two thiols present in protein disulfide bridge.
- Genetically modified proteins
Fig. 4 Illustration of PEGylation of proteins with unnatural amino acids. (Journal of controlled release 2014, 192, 67-81)
A novel strategy has been developed involving site-selectively introduce unnatural amino acids through recombinant technique, which are later PEGylated with specific PEGylating agents. The unnatural amino acids such as p-acetyl-L-phenylalanine and p-azidophenylalanine have been used for protein PEGylation.
Enzymatic PEGylation
In the field of PEGylation, enzymes due to their highly specificity and selectivity have also been considered as tools for PEGylation of peptides/proteins. Transglutaminase (TGase)-mediated PEGylation is the most common used method, which catalyzes addition of acyl residues to primary amines. Moreover, glycoPEGylation, involving two enzymes to mimic O-glycosylation, aims to solve the problem that threonine and serine in the case of O-glycosylation and aspargine cannot be PEGylated directly without affecting other traditional PEGylation sites.
Releasable and non-covalent PEGylation
Releasable and non-covalent PEGylation strives to overcome the loss of bioactivity resulting from PEG coupling at receptor binding site. For the Releasable PEGylation, tailor made PEGylating agents, containing hydrolysable linkers, are exploited to allow a slow and controlled protein releasein vivo. As regards to the non-covalent PEGylation, the polymer coupling does not involve a covalent bond but the polymer interacts with the protein through hydrophobic interactions or coordination bonds.
Why Us?
PEGylation Service Process
Reference
- Pfister, D.; Morbidelli, M., Process for protein PEGylation. Journal of Controlled Release 2014, 180, 134-149.
- Howard, M. D.; Jay, M.; et al. PEGylation of nanocarrier drug delivery systems: state of the art. Journal of Biomedical Nanotechnology 2008, 4 (2), 133-148.
- Kolate, A.; Baradia, D.; et al. PEG - a versatile conjugating ligand for drugs and drug delivery systems. Journal of controlled release : official journal of the Controlled Release Society 2014, 192, 67-81.
Why BOC Sciences?
-
Large Stock
More than 2000+ products in inventory
-
Global Delivery
Warehouses in multiple cities to ensure fast delivery
-
mg to kg
Multi specification for academic research and industrial production
-
24/7 Technical Support
Strict process parameter control to ensure product quality
Technical Support
- Aqueous Two-Phase System (ATPS) Technique
- Capillary Electrophoresis (CE) Technique
- Enzyme-linked immunosorbent assay (ELISA) Technique
- High performance liquid chromatography (HPLC) Technique
- Hydrophobic Interaction Chromatography (HIC) Technique
- PEGylated Protein Purification Techniques
- Radiolabeling Technique
- SDS-PAGE Technique
- Ultrafiltration Technique
Products
- Lipids
- PEG Derivatives by Structure
-
PEG Derivatives by Functional Group
- Acrylate/Acrylamide/Methacrylate PEG
- Aldehyde (Ald/CHO)PEG
- Alkyne PEG
- Amino PEG, PEG amine(-NH2)
- Azide PEG, Azido PEG(-N3)
- Biotin PEG
- Boc/Fmoc protected amine PEG
- Carboxylic Acid(-COOH) PEG
- Cholesterol PEG
- DBCO PEG
- DSPE PEG
- Epoxide glycidyl ether PEG
- FITC PEG
- Halide (chloride, bromide) PEG
- Hydrazide PEG
- Hydroxyl(-OH) PEG
- Maleimide(-MAL) PEG
- Multi-Arm PEG
- NHS ester PEG
- Nitrophenyl carbonate (NPC) PEG
- Norbornene PEG
- Olefin/Alkene/Vinyl PEG
- Orthopyridyl disulfide (OPSS) PEG
- Phosphate PEG
- Rhodamine PEG
- SCM PEG
- Silane PEG
- Sulfonate (tosyl, mesyl, tresyl) PEG
- tert-Butyl protected carboxylate PEG
- Thiol(-SH) PEG
- Vinylsulfone PEG
- PEG Copolymers
-
PEG Raw Materials
- Small-molecule Polyethylene Glycol
- Polyethylene Glycol 1000
- Polyethylene Glycol 10000
- Polyethylene Glycol 1500
- Polyethylene Glycol 200
- Polyethylene Glycol 2000
- Polyethylene Glycol 20000
- Polyethylene Glycol 400
- Polyethylene Glycol 4000
- Polyethylene Glycol 600
- Polyethylene Glycol 6000
- Polyethylene Glycol 800
- Polyethylene Glycol 8000
Resources
-
Technical Information
- Aqueous Two-Phase System (ATPS) Technique
- Capillary Electrophoresis (CE) Technique
- Enzyme-linked immunosorbent assay (ELISA) Technique
- High performance liquid chromatography (HPLC) Technique
- Hydrophobic Interaction Chromatography (HIC) Technique
- Introduction of Polyethylene Glycol (PEG)
- Ion Exchange Chromatography (IEX) Technique
- PEG for Chemical Synthesis
- PEG for Cosmetic Application
- PEG for Drug Delivery
- PEG for Imaging Diagnosis
- PEG for Pharmaceutical Preparation
- PEG for Tissue Engineering
- PEG Purification Techniques of Plasmid DNA
- PEGylated Protein Purification Techniques
- Radiolabeling Technique
- SDS-PAGE Technique
- Size Exclusion Chromatography (SEC) Technique
- Ultrafiltration Technique
-
Industry News
- Applications of Polyethylene Glycol (PEG) as Medical Devices
- FDA approved PEGylated Products
- How are Liposomes Different from Micelles?
- PEG Linkers in Antibody Drug Conjugates and PROTACs
- Polyethylene Glycol (PEG) Modified Targeting Nanomaterials
- The PROTAC Technology in Drug Development
- What are Lipid Nanoparticles and Their Applications?
- What are Lipids?
- What are Monodispersed and Polydispersed PEGs?
- What are Phospholipids?
- What is Click Chemistry?
- What is Hydrogel?
Our Feature
BOC Sciences supplies a unique variety of PEG derivatives and functional PEG polymers. Our products offer the most diverse collection of reactivity, ready-to-use functionality, and molecular weight options that you will not find anywhere else.

PEGylation of Peptides
and Proteins
Reduce the Immunogenicity of Peptide/Protein Drugs
Learn More
APPLICATIONS

PEG linkers For Drug
Improved Circulation Half-Life
Learn More
Have Customer Reviewed On Us?
Chat With Us