Radiolabeling Technique
Radiolabeling is a sensitive and reliable tracking method widely used in biology, genetic engineering, pharmacy, and medicine. The analytes can be intrinsically labeled by replacing atoms in the molecular structure with its own radioisotope or chemically modified with an extra radionuclide contained residue. The commonly used radioactive isotopes are 3H, 14C, 35S, 111In, 125I, and so on. As regards to PEG and PEGylated conjugates, radiolabeling is also a very effective tool to determine their pharmacokinetics in vivo.
Principles
Typically, a radioisotope is introduced to the PEG or PEGylated molecules by replacing one or several corresponding atoms with radioisotope, and is administrated in small amounts to minimize interference with the experimental system. The radionuclide atom continually emits radiation so that produces a copy of the conjugate with the same distribution path in the body, which can be detected and quantified by a γ-counter, liquid scintillation counter, Geiger counter or positron emission tomography computed tomography/computed tomography (PET/CT). Since the radioisotope labeling does not change the structure of the molecule and endows the analyte with fast identical physicochemical property, it can be used as a precise and sensitive tool to detect the pharmacokinetic behavior of the analytes. Up to date, radiolabeling has been successfully utilized in the studies of the in vivo absorption, distribution, metabolism, and excretion (ADME) processes of PEG, PEGylated small molecules, PEGylated peptides, PEGylated proteins, and PEGylated nanoparticles.
Radioisotopes Commonly Used
Methods for PEGs or PEG Derivatives Radiolabeling
Since methoxy-PEG (mPEG) is difficult to be directly labeled with radioisotope, it is necessary to use other functional end groups for radiolabeling.
- Amine-PEG
- Bi-functional PEG
- PEGylated Peptides/Proteins
- PEGylated Micelles/Liposomes
- PEGylated Nanoparticles
Fig. 1 Process demonstration of radiolabeling of amino-PEG. (Bioconjugate chemistry, 2012, 23(5): 881-899)
Amine-PEG can be directly labeled with 125I using Bolton Hunter reagent, as illustrated in the Fig. 1. Similarly, the PEG chain can react with 125I-labeled tyrosine (using the chloramine T method) through the terminal hydroxyl group, thereby being radioactive.
Fig. 2 Process demonstration of radiolabeling through a chelating agent. (Bioconjugate chemistry, 2012, 23(5): 881-899)
Chelating agents can be directly introduced to one end of a bifunctional PEG molecule to allow chelation of an isotope and covalent attachment to the target protein or peptide. As shown in Fig. 2, an amine-PEG-succinimidyl ester first react with a cyclic peptide and then react with DOTA sulfosuccinimydyl ester to expose the terminal -NH2 group for labeling with 64Cu.
Fig. 3 Process demonstration of radiolabeling of PEGylated peptides/proteins through click reaction. (Bioconjugate chemistry, 2012, 23(5): 881-899)
Click reaction, for example, Cu(I)-catalyzed azide−alkyne cycloaddition, can be sufficiently utilized to label PEGylated peptides/proteins for pharmacokinetic studies in tumor imaging application.
Fig. 4 Process illustration of surface radiolabeling of PEGylated liposomes. (Bioconjugate chemistry, 2012, 23(5): 881-899)
There are two major approaches to achieve the surface labeling of PEGylated liposomes or micelles: one is to use membrane-soluble chelating agents to incorporate radioisotopes into the conjugates, and the other choice is to covalently attach the chelating agents to the surface.
Inorganic nanoparticles, like Superparamagnetic iron oxide nanoparticles (SPION) and quantum dots (QDs), could also be reacted with the amine group at the PEG termini for binding of radioisotope, such as 64Cu. The biodistribution of these nanoparticles in mice could be followed by PET or magnetic resonance imaging (MRI).
Strengths & Weaknesses of Radiolabeling
References
- Zhang Z, Zhang Y, et al. Recent advances in the bioanalytical methods of polyethylene glycols and PEGylated pharmaceuticals. Journal of Separation Science, 2020, 43(9-10): 1978-1997.
- Cheng T L, Chuang K H, et al. Analytical measurement of PEGylated molecules. Bioconjugate chemistry, 2012, 23(5): 881-899.
Why BOC Sciences?
-
Large Stock
More than 2000+ products in inventory
-
Global Delivery
Warehouses in multiple cities to ensure fast delivery
-
mg to kg
Multi specification for academic research and industrial production
-
24/7 Technical Support
Strict process parameter control to ensure product quality
Technical Support
- Aqueous Two-Phase System (ATPS) Technique
- Capillary Electrophoresis (CE) Technique
- Enzyme-linked immunosorbent assay (ELISA) Technique
- High performance liquid chromatography (HPLC) Technique
- Hydrophobic Interaction Chromatography (HIC) Technique
- PEGylated Protein Purification Techniques
- Radiolabeling Technique
- SDS-PAGE Technique
- Ultrafiltration Technique
Products
- Lipids
- PEG Derivatives by Structure
-
PEG Derivatives by Functional Group
- Acrylate/Acrylamide/Methacrylate PEG
- Aldehyde (Ald/CHO)PEG
- Alkyne PEG
- Amino PEG, PEG amine(-NH2)
- Azide PEG, Azido PEG(-N3)
- Biotin PEG
- Boc/Fmoc protected amine PEG
- Carboxylic Acid(-COOH) PEG
- Cholesterol PEG
- DBCO PEG
- DNP PEG
- DSPE PEG
- Epoxide glycidyl ether PEG
- FITC PEG
- Folate PEG
- Halide (chloride, bromide) PEG
- Hydrazide PEG
- Hydroxyl(-OH) PEG
- Maleimide(-MAL) PEG
- NHS ester PEG
- Nitrophenyl carbonate (NPC) PEG
- Norbornene PEG
- Olefin/Alkene/Vinyl PEG
- Orthopyridyl disulfide (OPSS) PEG
- Phosphate PEG
- Rhodamine PEG
- SCM PEG
- Silane PEG
- SPDP PEG
- Sulfonate (tosyl, mesyl, tresyl) PEG
- tert-Butyl protected carboxylate PEG
- Thiol(-SH) PEG
- Vinylsulfone PEG
- PEG Copolymers
-
PEG Raw Materials
- Small-molecule Polyethylene Glycol
- Polyethylene Glycol 1000
- Polyethylene Glycol 10000
- Polyethylene Glycol 1500
- Polyethylene Glycol 200
- Polyethylene Glycol 2000
- Polyethylene Glycol 20000
- Polyethylene Glycol 400
- Polyethylene Glycol 4000
- Polyethylene Glycol 600
- Polyethylene Glycol 6000
- Polyethylene Glycol 800
- Polyethylene Glycol 8000
Resources
-
Technical Information
- Aqueous Two-Phase System (ATPS) Technique
- Capillary Electrophoresis (CE) Technique
- Enzyme-linked immunosorbent assay (ELISA) Technique
- High performance liquid chromatography (HPLC) Technique
- How to Perform Polyethylene Glycol (PEG) Modification?
- Hydrophobic Interaction Chromatography (HIC) Technique
- Introduction of Polyethylene Glycol (PEG)
- Ion Exchange Chromatography (IEX) Technique
- PEG for Chemical Synthesis
- PEG for Cosmetic Application
- PEG for Drug Delivery
- PEG for Imaging Diagnosis
- PEG for Pharmaceutical Preparation
- PEG for Tissue Engineering
- PEG Purification Techniques of Plasmid DNA
- PEGylated Protein Purification Techniques
- Polyethylene Glycol (PEG) Modifier Selection Guide
- Radiolabeling Technique
- SDS-PAGE Technique
- Size Exclusion Chromatography (SEC) Technique
- Ultrafiltration Technique
-
Industry News
- Applications of PEG-DSPE: Drug Carriers and Drug Delivery
- Applications of Polyethylene Glycol (PEG) as Medical Devices
- Cholesterol: Definition, Structure, Synthesis, Types and Functions
- Classification of Lipid-Based Vaccine Adjuvants
- FDA approved PEGylated Products
- FDA-Approved Antibody-Drug Conjugates up to 2024
- How are Liposomes Different from Micelles?
- How Lipid Nanoparticles (LNPs) Deliver RNA Drugs?
- Hyaluronic Acid & PEGylated Hyaluronic Acid
- Ionizable Lipids for RNA Delivery
- Lipid Classification and Drug Delivery Systems
- Lipid Formulations: Key Absorption-Enhancing Technologies in New Drug Development
- Lipid-Drug Conjugates (LDCs) for Nanoparticle Drug Delivery
- Liposome in Drug Delivery
- Overview of Liposome Preparation Process
- PEG in Pharmaceutical Preparations (I): Solvents, Lubricants, Adhesives and More
- PEG in Pharmaceutical Preparations (II): Stabilizers, Plasticizers and Modification Materials
- PEG Linkers in Antibody Drug Conjugates and PROTACs
- PEG-DSPE Block Copolymers and Their Derivatives
- PEGylated Drugs: Definition, Structure, Classification and Benefits
- PEGylated RGD Peptides: A Promising Tool for Targeted Drug Delivery
- Pharmacokinetics and Bioanalysis of PEGylated Drugs
- Polyethylene Glycol (PEG) Modified Targeting Nanomaterials
- Preparation Method of PEG Hydrogel
- The PROTAC Technology in Drug Development
- Vaccines: Definition, History, Ingredients, Types and Mechanism of Action
- What are Lipid Excipients and Their Applications?
- What are Lipid Nanoparticles and Their Applications?
- What are Lipid-Drug Conjugates (LDCs)?
- What are Lipids?
- What are Monodispersed and Polydispersed PEGs?
- What are PEG Lipids?
- What are Phospholipids?
- What are Sterols? - Definition, Structure, Function, Examples and Uses
- What is Biotinylation and Biotinylated PEG?
- What is Click Chemistry?
- What is Hydrogel?
- What is Methoxy Polyethylene Glycol (mPEG)?
- What is Nanogels and Its Applications?
- What is the Formulation of Lipid Nanoparticles (LNPs)?
Our Feature
BOC Sciences supplies a unique variety of PEG derivatives and functional PEG polymers. Our products offer the most diverse collection of reactivity, ready-to-use functionality, and molecular weight options that you will not find anywhere else.
PEGylation of Peptides
and Proteins
Reduce the Immunogenicity of Peptide/Protein Drugs
Learn More
APPLICATIONS
PEG linkers For Drug
Improved Circulation Half-Life
Learn More
Have Customer Reviewed On Us?
Chat With Us