PEGylated Biodegradable Polymers Synthesis
BOC Sciences possesses many in-stocks PEGylated biodegradable polymers with high quality, as well as provide tailored synthesis services according to the specific needs of our customers.
Biodegradable polymers are a special class of polymer, which largely consisted of ester, amide and ether functional groups. They can break down after its intended purpose to result in natural byproducts, thus can be utilized in various fields such as biology, medicine, packaging and agriculture. PEG is a synthetical material currently approved by FDA for several medical applications, which can further extend the application fields of the traditional biodegradable polymers via forming PEGylated biodegradable polymer.
Why PEG?
PEG is an ideal polymeric backbone material taking advantages of high structure flexibility, biocompatibility, amphiphilicity, devoid of any steric hindrances, and high hydration capacity. In the field of biomedicine, new materials consisting of biodegradable macromolecules linked with polyethylene glycol (PEG) can extend their original characteristics and have many important applications such as wound sealing and healing, controlled drug delivery and tissue engineering. Block copolymer containing PEG chains can be used as a scaffold material and can be combined with tissue living cells as an implantable material, playing a significant role for surgical sutures, cell membrane construction, artificial blood vessels, artificial ligaments or tendons. Furthermore, PEGylated biodegradable copolymers can also be used in degradable medical devices since they do not require human intervention to be removed from the body.
Application of PEGylated Biodegradable Polymers
- PEGylated Biodegradable Polymers for Drug Delivery
- PEGylated Biodegradable Polymers for Tissue Engineering
The core-shell structure formed by the PEGylated biodegradable copolymer has advantages used as a drug carrier because of its long circulation, good stability, high drug loading capacity, improved bioavailability, and reduced toxic side effects. The PEG chain attached to the polymer surface can mask the positive charge to reduce the toxicity of the polymer. The PEGylated biodegradable material can be used as a drug delivery carrier to prolong the sustained release of the drug, thereby enabling fewer administration times and avoiding interval administration. Di-block copolymers formed from PEG and other macromolecules, such as polycaprolactone (PCL), polylactic acid (LA), polylactide-co-glycolide (PLGA), etc., generally have good biocompatibility and safety, which can reduce the irritating effects of some drugs on the gastrointestinal tract, and avoid the toxic side effects certain drugs to the whole body. In addition, the di-block copolymers formed by PEG is amphiphilic. They are capable of self-assembly in an aqueous solution to encapsulate the drug to improve the solubility and stability of the coated drugs. The targeted drug delivery system is also a hot research direction. By adjusting the molecular weight of PEG and other block biodegradable macromolecules, the release time and place of the drugs can be tuned, thereby achieving targeted drug delivery.
Fig. 1 Schematic formation and structure of PLA–PEG shell cross-linked micelles and PLA–PEG–PLA core cross-linked micelles. (RSC Advances, 2015, 5(25), pp. 19484–19492)
Over the past decade, a variety of natural and synthetical biodegradable polymers have been utilized to form injectable hydrogels for tissue engineering. Synthetic polymers are more appealing compared with the counterparts because their more controllable physicochemical properties and better reproducibility. Among these, PEG and other biodegradable polymers are the most widely used synthetic polymers for preparation of injectable hydrogels. Biodegradable hydrogels based on PEG can be obtained via copolymerization with degradable polymers such as poly(lactic acid) (PLA) and poly(glycolic acid) (PGA). Furthermore, many natural biopolymers such as hyaluronic acid (HA), fibrinogen and chitosan, are also of great interest in combination with biodegradable PEG hydrogels. Highly hydrated hydrogels containing PEG can better mimic the chemical and physical environments of extracellular matrix (ECM) and therefore are ideal for cell proliferation and differentiation. Most importantly, biodegradable PEG hydrogels have a similar microstructure to the ECM and can be well integrated into the defect, thus avoiding an open surgery process and facilitating the use of minimally invasive approaches for cell delivery. Nowadays, the need of PEG-based biodegradable hydrogels is immense for that they can be used in cartilage regeneration, soft tissue regeneration, adhesive medical applications, and delivery vehicles with promising results.
Fig. 2 Schematic illustration of biodegradable hydrogel for tissue regeneration approaches. (Materials, 2010, 3(3): 1746-1767)
Why Us?
How to Order?
References
- Rösler A, et al. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Advanced drug delivery reviews, 2012, 64, pp. 270–279.
- Cheng J, et al. Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials, 2007, 28(5), pp. 869–876.
- Li, J., et al. Poly(lactic acid)/poly(ethylene glycol) block copolymer based shell or core cross-linked micelles for controlled release of hydrophobic drug. RSC Advances, 2015, 5(25), pp. 19484–19492.
- Tan H, Marra K G. Injectable, biodegradable hydrogels for tissue engineering applications. Materials, 2010, 3(3): 1746-1767.
Why BOC Sciences?
-
Large Stock
More than 2000+ products in inventory
-
Global Delivery
Warehouses in multiple cities to ensure fast delivery
-
mg to kg
Multi specification for academic research and industrial production
-
24/7 Technical Support
Strict process parameter control to ensure product quality
Technical Support
- Aqueous Two-Phase System (ATPS) Technique
- Capillary Electrophoresis (CE) Technique
- Enzyme-linked immunosorbent assay (ELISA) Technique
- High performance liquid chromatography (HPLC) Technique
- Hydrophobic Interaction Chromatography (HIC) Technique
- PEGylated Protein Purification Techniques
- Radiolabeling Technique
- SDS-PAGE Technique
- Ultrafiltration Technique
Products
- Lipids
- PEG Derivatives by Structure
-
PEG Derivatives by Functional Group
- Acrylate/Acrylamide/Methacrylate PEG
- Aldehyde (Ald/CHO)PEG
- Alkyne PEG
- Amino PEG, PEG amine(-NH2)
- Azide PEG, Azido PEG(-N3)
- Biotin PEG
- Boc/Fmoc protected amine PEG
- Carboxylic Acid(-COOH) PEG
- Cholesterol PEG
- DBCO PEG
- DNP PEG
- DSPE PEG
- Epoxide glycidyl ether PEG
- FITC PEG
- Folate PEG
- Halide (chloride, bromide) PEG
- Hydrazide PEG
- Hydroxyl(-OH) PEG
- Maleimide(-MAL) PEG
- NHS ester PEG
- Nitrophenyl carbonate (NPC) PEG
- Norbornene PEG
- Olefin/Alkene/Vinyl PEG
- Orthopyridyl disulfide (OPSS) PEG
- Phosphate PEG
- Rhodamine PEG
- SCM PEG
- Silane PEG
- SPDP PEG
- Sulfonate (tosyl, mesyl, tresyl) PEG
- tert-Butyl protected carboxylate PEG
- Thiol(-SH) PEG
- Vinylsulfone PEG
- PEG Copolymers
-
PEG Raw Materials
- Small-molecule Polyethylene Glycol
- Polyethylene Glycol 1000
- Polyethylene Glycol 10000
- Polyethylene Glycol 1500
- Polyethylene Glycol 200
- Polyethylene Glycol 2000
- Polyethylene Glycol 20000
- Polyethylene Glycol 400
- Polyethylene Glycol 4000
- Polyethylene Glycol 600
- Polyethylene Glycol 6000
- Polyethylene Glycol 800
- Polyethylene Glycol 8000
Resources
-
Technical Information
- Aqueous Two-Phase System (ATPS) Technique
- Capillary Electrophoresis (CE) Technique
- Enzyme-linked immunosorbent assay (ELISA) Technique
- High performance liquid chromatography (HPLC) Technique
- How to Perform Polyethylene Glycol (PEG) Modification?
- Hydrophobic Interaction Chromatography (HIC) Technique
- Introduction of Polyethylene Glycol (PEG)
- Ion Exchange Chromatography (IEX) Technique
- PEG for Chemical Synthesis
- PEG for Cosmetic Application
- PEG for Drug Delivery
- PEG for Imaging Diagnosis
- PEG for Pharmaceutical Preparation
- PEG for Tissue Engineering
- PEG Purification Techniques of Plasmid DNA
- PEGylated Protein Purification Techniques
- Polyethylene Glycol (PEG) Modifier Selection Guide
- Radiolabeling Technique
- SDS-PAGE Technique
- Size Exclusion Chromatography (SEC) Technique
- Ultrafiltration Technique
-
Industry News
- Applications of PEG-DSPE: Drug Carriers and Drug Delivery
- Applications of Polyethylene Glycol (PEG) as Medical Devices
- Cholesterol: Definition, Structure, Synthesis, Types and Functions
- Classification of Lipid-Based Vaccine Adjuvants
- FDA approved PEGylated Products
- FDA-Approved Antibody-Drug Conjugates up to 2024
- How are Liposomes Different from Micelles?
- How Lipid Nanoparticles (LNPs) Deliver RNA Drugs?
- Hyaluronic Acid & PEGylated Hyaluronic Acid
- Ionizable Lipids for RNA Delivery
- Lipid Classification and Drug Delivery Systems
- Lipid Formulations: Key Absorption-Enhancing Technologies in New Drug Development
- Lipid-Drug Conjugates (LDCs) for Nanoparticle Drug Delivery
- Liposome in Drug Delivery
- Overview of Liposome Preparation Process
- PEG in Pharmaceutical Preparations (I): Solvents, Lubricants, Adhesives and More
- PEG in Pharmaceutical Preparations (II): Stabilizers, Plasticizers and Modification Materials
- PEG Linkers in Antibody Drug Conjugates and PROTACs
- PEG-DSPE Block Copolymers and Their Derivatives
- PEGylated Drugs: Definition, Structure, Classification and Benefits
- PEGylated RGD Peptides: A Promising Tool for Targeted Drug Delivery
- Pharmacokinetics and Bioanalysis of PEGylated Drugs
- Polyethylene Glycol (PEG) Modified Targeting Nanomaterials
- Preparation Method of PEG Hydrogel
- The PROTAC Technology in Drug Development
- Vaccines: Definition, History, Ingredients, Types and Mechanism of Action
- What are Lipid Excipients and Their Applications?
- What are Lipid Nanoparticles and Their Applications?
- What are Lipid-Drug Conjugates (LDCs)?
- What are Lipids?
- What are Monodispersed and Polydispersed PEGs?
- What are PEG Lipids?
- What are Phospholipids?
- What are Sterols? - Definition, Structure, Function, Examples and Uses
- What is Biotinylation and Biotinylated PEG?
- What is Click Chemistry?
- What is Hydrogel?
- What is Methoxy Polyethylene Glycol (mPEG)?
- What is Nanogels and Its Applications?
- What is the Formulation of Lipid Nanoparticles (LNPs)?
Our Feature
BOC Sciences supplies a unique variety of PEG derivatives and functional PEG polymers. Our products offer the most diverse collection of reactivity, ready-to-use functionality, and molecular weight options that you will not find anywhere else.
PEGylation of Peptides
and Proteins
Reduce the Immunogenicity of Peptide/Protein Drugs
Learn More
APPLICATIONS
PEG linkers For Drug
Improved Circulation Half-Life
Learn More
Have Customer Reviewed On Us?
Chat With Us