Ultrafiltration Technique
Membrane separation processes are the simplest among all non-chromatographic techniques currently used and are based on the molecular weight and hydrodynamic radius of the proteins. PEGylated species can be efficiently fractionated and recovered using ultrafiltration. Even though ultrafiltration is not able to separate PEGylated conjugates according to their positional isomerism, it is still a powerful alternative to size exclusion chromatography (SEC) for the purification due to its certain advantages, such as cost and throughput.
Fig. 1 Schematic of ultrafiltration stirred cell apparatus. (Ruanjaikaen K. 2013)
How Does Ultrafiltration Work?
Fig. 2 Schematic illustration of dynamic ultrafiltration process. (Baker, R. W. 2000)
Ultrafiltration is an intermediate between microfiltration and reverse osmosis. It is one of the membrane separation technologies driven by pressure. In the ultrafiltration process, the aqueous solution flows through the membrane surface. The solvent and small molecular solutes smaller than the membrane pores can permeate the membrane to become purification fluid (filtrate), whereas the solutes larger than the membrane pores will be trapped and discharged with the water flow to become concentrated liquid.
The ultrafiltration process is dynamic, and the separation is completed in a flowing state. Solutes unable to pass through the membrane are accumulated on the membrane surface, forming a solid gel-like film that acts as a barrier to the flow of permeate through the membrane. The thickness of the fouling film is controlled by the sweeping action of the feed solution past the membrane surface. This circulating flow of solution hydrodynamically scrubs the membrane surface, continuously removing the surface film. Thus, a balance is achieved between circulation of solution past the membrane surface, which removes the gelled material, and the flux of permeate through the membrane, which brings fresh material to the membrane surface.
General Considerations
In the ultrafiltration process, the influencing factors that affect the efficiency of ultrafiltration mainly include the following aspects:
- Operating pressure
- Flow rate of the feed
- Pretreatment of feed liquid
- Operating temperature
- Maintenance of membrane
Since a gel-like layer will be formed at the interface of the membrane during the ultrafiltration process, when the operating pressure increases to a certain value, the permeable flux will no longer increase. Therefore, the pressure should be appropriate. Excessive permeable flux will compact or damage the membrane. The practical operating pressure during ultrafiltration is about 0.5 to 0.6 MPa.
Increasing the flow rate of the feed liquid can aggravate the turbulence of the liquid flow on the membrane surface, which is beneficial to slow down the concentration polarization and improve the processing capacity of the equipment. However, if the flow rate is too high, the energy consumption and the operating cost will correspondingly increase. Therefore, it is necessary to control the flow rate of the feed liquid in an appropriate range. Under normal circumstances, the flow rate is around 1~ 3 m/s.
In order to ensure the normal and stable operation of the ultrafiltration system and improve its efficiency, the feed liquid should be pretreated. There are various types of pretreatment methods including filtration, chemical coagulation, pH adjustment, disinfection, and activated carbon adsorption, etc., and can be selected according to the property of the feed and the unique needs of the research.
The operating temperature of the system mainly affects the viscosity of the feed liquid. Under certain conditions, increasing the operating temperature will help to increase the mass transfer efficiency and the permeable flux.
It is recommended to pay attention to the maintenance of the membrane during daily use. If not, the membrane's permeable flux will gradually decay and the separation ability will be influenced. Membrane cleaning methods include hydraulic cleaning, chemical cleaning and mechanical cleaning, etc., which usually be determined according to the property of the membrane and the feed liquid.
What Can Ultrafiltration Be Used For?
- Separation of proteins, enzymes, nucleic acids, polysaccharides, peptides, antibiotics, viruses, etc. in biopharmaceuticals.
- Separation of mono-, multi- PEGylated species from unreacted proteins.
- Desalination, concentration and fractionation of macromolecular substances.
- It could also be used as the depyrogenation treatment of biochemical preparations.
Strengths & Weaknesses of Ultrafiltration
Summary of Developed Membrane Separation Techniques
In addition to ultrafiltration, there are several commonly used commercial membrane separation processes. They all well-established and are briefly listed as follows:
Process | Type of Membrane | Material Passed | Material Retained | Driving Force |
Ultrafiltration | Finely microporous 1-100 nm |
Water, dissolved salts |
Macromolecules, colloids | Pressure difference 20-100 psi |
Microfiltration | Finely microporous 0.1-10 μm |
Water, dissolved solutes |
Suspended solids, bacteria | Pressure difference 5-50 psi |
Reverse osmosis | Dense solution-diffusion |
Water | Dissolved salts | Pressure difference 100-1000 psi |
Dialysis | Finely microporous 10-100 nm |
Dissolved salts, dissolved gases |
Blood | Concentration differences |
Electrodialysis | Electrically charged films | Water | Ions | Ions Voltage difference 1-2 V |
References
- Baker, R. W. Membrane separation. Membrane Technology & Research Inc. (MTR) 2000.
- Ruanjaikaen K. Purification and production of pegylated proteins using membrane processes. 2013.
Why BOC Sciences?
-
Large Stock
More than 2000+ products in inventory
-
Global Delivery
Warehouses in multiple cities to ensure fast delivery
-
mg to kg
Multi specification for academic research and industrial production
-
24/7 Technical Support
Strict process parameter control to ensure product quality
Technical Support
- Aqueous Two-Phase System (ATPS) Technique
- Capillary Electrophoresis (CE) Technique
- Enzyme-linked immunosorbent assay (ELISA) Technique
- High performance liquid chromatography (HPLC) Technique
- Hydrophobic Interaction Chromatography (HIC) Technique
- PEGylated Protein Purification Techniques
- Radiolabeling Technique
- SDS-PAGE Technique
- Ultrafiltration Technique
Products
- Lipids
- PEG Derivatives by Structure
-
PEG Derivatives by Functional Group
- Acrylate/Acrylamide/Methacrylate PEG
- Aldehyde (Ald/CHO)PEG
- Alkyne PEG
- Amino PEG, PEG amine(-NH2)
- Azide PEG, Azido PEG(-N3)
- Biotin PEG
- Boc/Fmoc protected amine PEG
- Carboxylic Acid(-COOH) PEG
- Cholesterol PEG
- DBCO PEG
- DNP PEG
- DSPE PEG
- Epoxide glycidyl ether PEG
- FITC PEG
- Folate PEG
- Halide (chloride, bromide) PEG
- Hydrazide PEG
- Hydroxyl(-OH) PEG
- Maleimide(-MAL) PEG
- NHS ester PEG
- Nitrophenyl carbonate (NPC) PEG
- Norbornene PEG
- Olefin/Alkene/Vinyl PEG
- Orthopyridyl disulfide (OPSS) PEG
- Phosphate PEG
- Rhodamine PEG
- SCM PEG
- Silane PEG
- SPDP PEG
- Sulfonate (tosyl, mesyl, tresyl) PEG
- tert-Butyl protected carboxylate PEG
- Thiol(-SH) PEG
- Vinylsulfone PEG
- PEG Copolymers
-
PEG Raw Materials
- Small-molecule Polyethylene Glycol
- Polyethylene Glycol 1000
- Polyethylene Glycol 10000
- Polyethylene Glycol 1500
- Polyethylene Glycol 200
- Polyethylene Glycol 2000
- Polyethylene Glycol 20000
- Polyethylene Glycol 400
- Polyethylene Glycol 4000
- Polyethylene Glycol 600
- Polyethylene Glycol 6000
- Polyethylene Glycol 800
- Polyethylene Glycol 8000
Resources
-
Technical Information
- Aqueous Two-Phase System (ATPS) Technique
- Capillary Electrophoresis (CE) Technique
- Enzyme-linked immunosorbent assay (ELISA) Technique
- High performance liquid chromatography (HPLC) Technique
- How to Perform Polyethylene Glycol (PEG) Modification?
- Hydrophobic Interaction Chromatography (HIC) Technique
- Introduction of Polyethylene Glycol (PEG)
- Ion Exchange Chromatography (IEX) Technique
- PEG for Chemical Synthesis
- PEG for Cosmetic Application
- PEG for Drug Delivery
- PEG for Imaging Diagnosis
- PEG for Pharmaceutical Preparation
- PEG for Tissue Engineering
- PEG Purification Techniques of Plasmid DNA
- PEGylated Protein Purification Techniques
- Polyethylene Glycol (PEG) Modifier Selection Guide
- Radiolabeling Technique
- SDS-PAGE Technique
- Size Exclusion Chromatography (SEC) Technique
- Ultrafiltration Technique
-
Industry News
- Applications of PEG-DSPE: Drug Carriers and Drug Delivery
- Applications of Polyethylene Glycol (PEG) as Medical Devices
- Cholesterol: Definition, Structure, Synthesis, Types and Functions
- Classification of Lipid-Based Vaccine Adjuvants
- FDA approved PEGylated Products
- FDA-Approved Antibody-Drug Conjugates up to 2024
- How are Liposomes Different from Micelles?
- How Lipid Nanoparticles (LNPs) Deliver RNA Drugs?
- Hyaluronic Acid & PEGylated Hyaluronic Acid
- Ionizable Lipids for RNA Delivery
- Lipid Classification and Drug Delivery Systems
- Lipid Formulations: Key Absorption-Enhancing Technologies in New Drug Development
- Lipid-Drug Conjugates (LDCs) for Nanoparticle Drug Delivery
- Liposome in Drug Delivery
- Overview of Liposome Preparation Process
- PEG in Pharmaceutical Preparations (I): Solvents, Lubricants, Adhesives and More
- PEG in Pharmaceutical Preparations (II): Stabilizers, Plasticizers and Modification Materials
- PEG Linkers in Antibody Drug Conjugates and PROTACs
- PEG-DSPE Block Copolymers and Their Derivatives
- PEGylated Drugs: Definition, Structure, Classification and Benefits
- PEGylated RGD Peptides: A Promising Tool for Targeted Drug Delivery
- Pharmacokinetics and Bioanalysis of PEGylated Drugs
- Polyethylene Glycol (PEG) Modified Targeting Nanomaterials
- Preparation Method of PEG Hydrogel
- The PROTAC Technology in Drug Development
- Vaccines: Definition, History, Ingredients, Types and Mechanism of Action
- What are Lipid Excipients and Their Applications?
- What are Lipid Nanoparticles and Their Applications?
- What are Lipid-Drug Conjugates (LDCs)?
- What are Lipids?
- What are Monodispersed and Polydispersed PEGs?
- What are PEG Lipids?
- What are Phospholipids?
- What are Sterols? - Definition, Structure, Function, Examples and Uses
- What is Biotinylation and Biotinylated PEG?
- What is Click Chemistry?
- What is Hydrogel?
- What is Methoxy Polyethylene Glycol (mPEG)?
- What is Nanogels and Its Applications?
- What is the Formulation of Lipid Nanoparticles (LNPs)?
Our Feature
BOC Sciences supplies a unique variety of PEG derivatives and functional PEG polymers. Our products offer the most diverse collection of reactivity, ready-to-use functionality, and molecular weight options that you will not find anywhere else.
PEGylation of Peptides
and Proteins
Reduce the Immunogenicity of Peptide/Protein Drugs
Learn More
APPLICATIONS
PEG linkers For Drug
Improved Circulation Half-Life
Learn More
Have Customer Reviewed On Us?
Chat With Us