PEG & Hydrogel Solutions
Owing to their high hydrophilicity, tunable physicochemical properties and antifouling properties, PEG hydrogels are widely used in various biomedical applications, including scaffolds for delivering therapeutic biomolecules and regenerative medicine. The design, fabrication, and characterization of PEG hydrogels depend on the understanding of basic gel dynamics and application purposes. BOC Sciences can provide PEG hydrogel design and development services with different polymerization mechanisms to support the application of these biocompatible hydrogels in regenerative medicine. In addition, design criteria for maintaining the availability and stability of PEG hydrogel biomolecules will be provided.
What is Hydrogel?
Hydrogels are a class of widely studied and applied biomaterials. Hydrogels have been widely studied as cell scaffolds and drug delivery vehicles because their chemical and physical properties are very close to the natural environment of cells. Hydrogels can encapsulate both cells and biomolecules, and many gel systems can closely control the release properties through systematic changes in the physical and chemical structure of the gel. Hydrogels can be formed from synthetic (e.g., poly(ethylene glycol), poly(hydroxyethyl methacrylate)) and naturally occurring polymers (e.g., collagen, hyaluronic acid, heparin). Due to their high water content, hydrogels are able to form in the presence of cells, proteins and DNA. Among them, the versatility and excellent biocompatibility of PEG macromolecular chemistry have facilitated the development of numerous intelligently designed hydrogel systems for regenerative medicine applications.
Fig. 1. Schematic structures of PEG hydrogels formed via: (A) chain-growth, (B) step-growth, and (C) mixed-mode step and chain growth polymerization (Pharmaceutical Research. 2009, 26(3): 631-643).
PEG hydrogels have been widely used for cell encapsulation and therapeutic protein delivery due to their tissue-like water content, adjustable physicochemical properties and resistance to nonspecific protein adsorption. Through copolymerization with other macromolecules, it is easy to introduce multiple functional groups into PEG hydrogels to inhibit or promote cell survival and function. Chemical or covalent crosslinking is the most commonly used hydrogel crosslinking mechanism, which leads to relatively stable hydrogel structures and tunable physicochemical properties such as permeability, molecular diffusivity, equilibrium water content, elasticity, modulus amount and degradation rate. Among them, chain-growth and step-growth polymerization cross-linking reactions can adjust the mesh size of the hydrogel to control protein release. The mesh size is usually controlled by changing the molecular weight and concentration of monomers. For example, hydrogels with mesh size smaller than the hydrodynamic radius of the encapsulated proteins will result in sustained release of proteins.
Our PEG Solutions for Hydrogels
Design criteria for controlled release in PEG-based hydrogels may vary by application due to the variability in the chemical nature and size of the delivered molecules. BOC Sciences can provide controlled delivery screening services of PEG-based hydrogel systems ranging from small molecule drugs to large biomacromolecules such as nucleic acids, peptides and proteins. In addition, we also offer drug availability (correct dosage) screening and biostability testing for PEG hydrogels in order to achieve the desired therapeutic effect in vivo or in vitro.
- Chain growth crosslinking polymerization
- Step growth crosslinked polymerization
- Mixed mode crosslinking polymerization
- Controlled release design criteria screening
- Availability assessment of biomolecules
- Stability determination of biomolecules
PEGylation Analysis Capabilities
- PEGylation purity and extent analysis
- Hydrodynamic diameter of PEGylated species
- Surface charge of PEGylated substances
- Speciation analysis of PEGylated substances
- Evaluation of degree of substitution with PEG
Our PEG Solution Service Workflow
Our Strengths in PEG Development and Manufacturing
- One-stop development solutions
- Responsive project management
- Professional and skilled research team
- Rich experience in pegylation technology
- Well-equipped comprehensive analytical support
- Pilot and commercial scale production
If you are interested in our PEG hydrogel solutions, contact us to learn more.
Why BOC Sciences?
-
Large Stock
More than 2000+ products in inventory
-
Global Delivery
Warehouses in multiple cities to ensure fast delivery
-
mg to kg
Multi specification for academic research and industrial production
-
24/7 Technical Support
Strict process parameter control to ensure product quality
Technical Support
- Aqueous Two-Phase System (ATPS) Technique
- Capillary Electrophoresis (CE) Technique
- Enzyme-linked immunosorbent assay (ELISA) Technique
- High performance liquid chromatography (HPLC) Technique
- Hydrophobic Interaction Chromatography (HIC) Technique
- PEGylated Protein Purification Techniques
- Radiolabeling Technique
- SDS-PAGE Technique
- Ultrafiltration Technique
Products
- Lipids
- PEG Derivatives by Structure
-
PEG Derivatives by Functional Group
- Acrylate/Acrylamide/Methacrylate PEG
- Aldehyde (Ald/CHO)PEG
- Alkyne PEG
- Amino PEG, PEG amine(-NH2)
- Azide PEG, Azido PEG(-N3)
- Biotin PEG
- Boc/Fmoc protected amine PEG
- Carboxylic Acid(-COOH) PEG
- Cholesterol PEG
- DBCO PEG
- DSPE PEG
- Epoxide glycidyl ether PEG
- FITC PEG
- Halide (chloride, bromide) PEG
- Hydrazide PEG
- Hydroxyl(-OH) PEG
- Maleimide(-MAL) PEG
- Multi-Arm PEG
- NHS ester PEG
- Nitrophenyl carbonate (NPC) PEG
- Norbornene PEG
- Olefin/Alkene/Vinyl PEG
- Orthopyridyl disulfide (OPSS) PEG
- Phosphate PEG
- Rhodamine PEG
- SCM PEG
- Silane PEG
- Sulfonate (tosyl, mesyl, tresyl) PEG
- tert-Butyl protected carboxylate PEG
- Thiol(-SH) PEG
- Vinylsulfone PEG
- PEG Copolymers
-
PEG Raw Materials
- Small-molecule Polyethylene Glycol
- Polyethylene Glycol 1000
- Polyethylene Glycol 10000
- Polyethylene Glycol 1500
- Polyethylene Glycol 200
- Polyethylene Glycol 2000
- Polyethylene Glycol 20000
- Polyethylene Glycol 400
- Polyethylene Glycol 4000
- Polyethylene Glycol 600
- Polyethylene Glycol 6000
- Polyethylene Glycol 800
- Polyethylene Glycol 8000
Services
- PEGylation Services
- PEGylation Analysis and Method Verification
- Surface Modification and Functionalization
- PEGylated Biodegradable Polymers Synthesis
- Monodisperse PEG Synthesis
- Custom Synthesis PEG Derivatives
- PEG cGMP Manufacture
- PEG Crosslinking Services
Resources
-
Technical Information
- Aqueous Two-Phase System (ATPS) Technique
- Capillary Electrophoresis (CE) Technique
- Enzyme-linked immunosorbent assay (ELISA) Technique
- High performance liquid chromatography (HPLC) Technique
- Hydrophobic Interaction Chromatography (HIC) Technique
- Introduction of Polyethylene Glycol (PEG)
- Ion Exchange Chromatography (IEX) Technique
- PEG for Chemical Synthesis
- PEG for Cosmetic Application
- PEG for Drug Delivery
- PEG for Imaging Diagnosis
- PEG for Pharmaceutical Preparation
- PEG for Tissue Engineering
- PEGylated Protein Purification Techniques
- Radiolabeling Technique
- SDS-PAGE Technique
- Size Exclusion Chromatography (SEC) Technique
- Ultrafiltration Technique
- Industry News
Our Feature
BOC Sciences supplies a unique variety of PEG derivatives and functional PEG polymers. Our products offer the most diverse collection of reactivity, ready-to-use functionality, and molecular weight options that you will not find anywhere else.

PEGylation of Peptides
and Proteins
Reduce the Immunogenicity of Peptide/Protein Drugs
Learn More
APPLICATIONS

PEG linkers For Drug
Improved Circulation Half-Life
Learn More
Have Customer Reviewed On Us?
Chat With Us