Hydroxyl(-OH) PEG
- 4-Arm PEG, 1-Arm-OH, 3-Arm-AA
- 4-Arm PEG, 2-Arm-OH, 2-Arm-AA
- 4-Arm PEG, 3-Arm-OH, 1-Arm-AA
- 4-Arm PEG-OH
- 8-Arm PEG-OH
- AC-PEG-OH
- Benzyl-PEG-OH
- Biotin-PEG-OH
- C18-PEG-OH
- HO-PEG-CH2CO2tBu
- HO-PEG-NHS ester
- HO-PEG-Propargyl
- HO-PEG-Succinimidyl Carbonate
- HO-PEG-Tos
- HO-PEG-Valeric acid
- HS-PEG-OH
- Hydroxy-PEG-t-butyl ester
- Lipoamido-PEG-OH
- MAL-PEG-OH
- Methylaniline-PEG-OH
- mPEG-OH
- OPSS-PEG-OH
- Small-molecule Hydroxyl PEG
- 4-Arm PEG, 2-Arm-OH, 2-Arm-NH2, HCl
- 4-Arm PEG, 3-Arm-OH, 1-Arm-NH2, HCl
- 8-Arm PEG (hexaglycerol), 7-Arm-OH, 1-Arm-AA
- 8-Arm PEG, 7-Arm-OH, 1-Arm-AA
Hydroxyl PEG (OH PEG) is a polyethylene glycol compound with hydroxyl functional groups. Hydroxyl PEG is reactive and can be chemically reacted with other compounds or biomolecules for modification and functionalization of PEG. Hydroxy PEG can be used to construct biomaterials such as hydrogels, polymer microspheres and scaffold materials. By adjusting the molecular weight and concentration of hydroxy PEG, the physical properties, biocompatibility and degradation properties of the materials can be modulated to meet specific tissue engineering and biomedical application requirements.
Fig. 1. Stabilization of nanoparticles with hydroxyl-PEG-phosphonic acid (Langmuir. 2019, 35(29): 9474-9482).
Examples of Hydroxyl PEG
Amine PEG Hydroxyl
Amine PEG Hydroxyl is a heterobifunctional PEG. Heterobifunctional hydroxy PEG amine products are commonly used as crosslinking agents or as spacer groups between two different chemical entities. The PEG portion of the heterobifunctional PEG derivative provides water solubility, biocompatibility and flexibility.
OPSS-PEG-OH
OPSS-PEG-OH has an OPSS and a hydroxyl group at each end of the molecular chain and is a linear heterofunctional PEG reagent. It is a useful cross-linking reagent for PEG spacers. OPSS stands for o-pyridyl disulfide or o-pyridyl disulfide, which reacts with thiols and sulfhydryl groups to form S-S bonds. Through the pyridyl disulfide bond, OPSS-PEG-OH can selectively react with sulfhydryl groups to form a stable disulfide bond while releasing the thiol pyridyl group. Through this reaction, it can modify biomolecules or other materials.
C18-PEG-OH
C18-PEG-OH is a PEG derivative modifier with a C18 hydrocarbon chain on one end and a hydroxyethyl group on the other. The simultaneous presence of polar and non-polar groups makes it a useful amphiphilic surfactant. As a PEG modifier, C18-PEG-OH helps to improve the solubility and stability of modified biomolecules while reducing the immunogenicity of peptides and proteins and inhibiting the non-specific binding of charged molecules on the modified surface.
How Hydroxyl PEG Derivatives are Prepared?
Step 1: Carboxyl Group Introduction
Carboxyl group introduction requires choosing a suitable polyethylene glycol as the starting material and mixing this starting material with hydroxyl reagent to react. After hydroxylation reaction, the crude product is purified to obtain the target product.
Step 2: Post-hydroxylation Modification
After obtaining the hydroxylated polyethylene glycol, the hydroxylated PEG is modified by reacting it with the groups to be modified (amino group, carbon chain, etc.).
Advantages of Hydroxyl PEG
Hydroxyl PEG has the following advantages as a PEG derivative, in addition to biocompatibility, ease of modification, high stability, and structural modification.
Multifunctional Splice Sites
The hydroxyl group of OH-PEG provides multiple sites for the affixation of various functional groups, which can be modified by chemical reactions such as esterification, amidation or etherification. The modified PEG derivatives can then be attached to targeted ligands, drug molecules, and other substances to enhance the development of targeted drug delivery systems or biomaterials.
Invisible Properties
Hydroxy PEG is hydrophilic and can reduce interactions with proteins and cells by forming a hydrated layer, thereby reducing immune recognition and clearance by the body's defense mechanisms.
BOC Sciences has strong manufacturing capabilities for hydroxyl PEG and related products. We offer a variety of hydroxyl PEG derivatives with different PEG chain lengths and linkage groups to meet specific customer needs. Our manufacturing process is conducted under strict quality control standards to ensure the highest quality and purity of our products. We also provide technical support and expertise to help customers with hydroxyl PEG applications.
Reference
- Lu, C. et al. Hydroxyl-PEG-phosphonic acid-stabilized superparamagnetic manganese oxide-doped iron oxide nanoparticles with synergistic effects for dual-mode MR imaging. Langmuir. 2019, 35(29): 9474-9482.
Why BOC Sciences?
-
Large Stock
More than 2000+ products in inventory
-
Global Delivery
Warehouses in multiple cities to ensure fast delivery
-
mg to kg
Multi specification for academic research and industrial production
-
24/7 Technical Support
Strict process parameter control to ensure product quality
Technical Support
- Aqueous Two-Phase System (ATPS) Technique
- Capillary Electrophoresis (CE) Technique
- Enzyme-linked immunosorbent assay (ELISA) Technique
- High performance liquid chromatography (HPLC) Technique
- Hydrophobic Interaction Chromatography (HIC) Technique
- PEGylated Protein Purification Techniques
- Radiolabeling Technique
- SDS-PAGE Technique
- Ultrafiltration Technique
Products
- Lipids
- PEG Derivatives by Structure
-
PEG Derivatives by Functional Group
- Acrylate/Acrylamide/Methacrylate PEG
- Aldehyde (Ald/CHO)PEG
- Alkyne PEG
- Amino PEG, PEG amine(-NH2)
- Azide PEG, Azido PEG(-N3)
- Biotin PEG
- Boc/Fmoc protected amine PEG
- Carboxylic Acid(-COOH) PEG
- Cholesterol PEG
- DBCO PEG
- DNP PEG
- DSPE PEG
- Epoxide glycidyl ether PEG
- FITC PEG
- Folate PEG
- Halide (chloride, bromide) PEG
- Hydrazide PEG
- Hydroxyl(-OH) PEG
- Maleimide(-MAL) PEG
- NHS ester PEG
- Nitrophenyl carbonate (NPC) PEG
- Norbornene PEG
- Olefin/Alkene/Vinyl PEG
- Orthopyridyl disulfide (OPSS) PEG
- Phosphate PEG
- Rhodamine PEG
- SCM PEG
- Silane PEG
- SPDP PEG
- Sulfonate (tosyl, mesyl, tresyl) PEG
- tert-Butyl protected carboxylate PEG
- Thiol(-SH) PEG
- Vinylsulfone PEG
- PEG Copolymers
-
PEG Raw Materials
- Small-molecule Polyethylene Glycol
- Polyethylene Glycol 1000
- Polyethylene Glycol 10000
- Polyethylene Glycol 1500
- Polyethylene Glycol 200
- Polyethylene Glycol 2000
- Polyethylene Glycol 20000
- Polyethylene Glycol 400
- Polyethylene Glycol 4000
- Polyethylene Glycol 600
- Polyethylene Glycol 6000
- Polyethylene Glycol 800
- Polyethylene Glycol 8000
Resources
-
Technical Information
- Aqueous Two-Phase System (ATPS) Technique
- Capillary Electrophoresis (CE) Technique
- Enzyme-linked immunosorbent assay (ELISA) Technique
- High performance liquid chromatography (HPLC) Technique
- How to Perform Polyethylene Glycol (PEG) Modification?
- Hydrophobic Interaction Chromatography (HIC) Technique
- Introduction of Polyethylene Glycol (PEG)
- Ion Exchange Chromatography (IEX) Technique
- PEG for Chemical Synthesis
- PEG for Cosmetic Application
- PEG for Drug Delivery
- PEG for Imaging Diagnosis
- PEG for Pharmaceutical Preparation
- PEG for Tissue Engineering
- PEG Purification Techniques of Plasmid DNA
- PEGylated Protein Purification Techniques
- Polyethylene Glycol (PEG) Modifier Selection Guide
- Radiolabeling Technique
- SDS-PAGE Technique
- Size Exclusion Chromatography (SEC) Technique
- Ultrafiltration Technique
-
Industry News
- Applications of PEG-DSPE: Drug Carriers and Drug Delivery
- Applications of Polyethylene Glycol (PEG) as Medical Devices
- Cholesterol: Definition, Structure, Synthesis, Types and Functions
- Classification of Lipid-Based Vaccine Adjuvants
- FDA approved PEGylated Products
- FDA-Approved Antibody-Drug Conjugates up to 2024
- How are Liposomes Different from Micelles?
- How Lipid Nanoparticles (LNPs) Deliver RNA Drugs?
- Hyaluronic Acid & PEGylated Hyaluronic Acid
- Ionizable Lipids for RNA Delivery
- Lipid Classification and Drug Delivery Systems
- Lipid Formulations: Key Absorption-Enhancing Technologies in New Drug Development
- Lipid-Drug Conjugates (LDCs) for Nanoparticle Drug Delivery
- Liposome in Drug Delivery
- Overview of Liposome Preparation Process
- PEG in Pharmaceutical Preparations (I): Solvents, Lubricants, Adhesives and More
- PEG in Pharmaceutical Preparations (II): Stabilizers, Plasticizers and Modification Materials
- PEG Linkers in Antibody Drug Conjugates and PROTACs
- PEG-DSPE Block Copolymers and Their Derivatives
- PEGylated Drugs: Definition, Structure, Classification and Benefits
- PEGylated RGD Peptides: A Promising Tool for Targeted Drug Delivery
- Pharmacokinetics and Bioanalysis of PEGylated Drugs
- Polyethylene Glycol (PEG) Modified Targeting Nanomaterials
- Preparation Method of PEG Hydrogel
- The PROTAC Technology in Drug Development
- Vaccines: Definition, History, Ingredients, Types and Mechanism of Action
- What are Lipid Excipients and Their Applications?
- What are Lipid Nanoparticles and Their Applications?
- What are Lipid-Drug Conjugates (LDCs)?
- What are Lipids?
- What are Monodispersed and Polydispersed PEGs?
- What are PEG Lipids?
- What are Phospholipids?
- What are Sterols? - Definition, Structure, Function, Examples and Uses
- What is Biotinylation and Biotinylated PEG?
- What is Click Chemistry?
- What is Hydrogel?
- What is Methoxy Polyethylene Glycol (mPEG)?
- What is Nanogels and Its Applications?
- What is the Formulation of Lipid Nanoparticles (LNPs)?
Our Feature
BOC Sciences supplies a unique variety of PEG derivatives and functional PEG polymers. Our products offer the most diverse collection of reactivity, ready-to-use functionality, and molecular weight options that you will not find anywhere else.
PEGylation of Peptides
and Proteins
Reduce the Immunogenicity of Peptide/Protein Drugs
Learn More
APPLICATIONS
PEG linkers For Drug
Improved Circulation Half-Life
Learn More
Have Customer Reviewed On Us?
Chat With Us