Phospholipids
Cat. No. | Product Name | CAS No. | |
---|---|---|---|
BPG-3269 | 25-(C4 TopFluor®) 25-OH cholesterol | 2260795-67-1 | Inquiry |
BPG-3270 | 3-dodecanoyl-NBD Cholesterol | 1246303-05-8 | Inquiry |
BPG-3271 | 3-hexanoyl-NBD Cholesterol | 201731-19-3 | Inquiry |
BPG-3272 | 16:0 TopFluor® cholesterol | 2260795-57-9 | Inquiry |
BPG-3273 | 18:2 TopFluor® cholesterol | 2260795-60-4 | Inquiry |
BPG-3274 | TopFluor® TMR cholesterol | 2342615-73-8 | Inquiry |
The unique interfacial properties, enormous diversity, and biocompatibility of phospholipids make them attractive pharmaceutical excipients. These amphiphilic molecules have the property of self-assembling into different structures. The solubility, chemical and structural properties, surface charge and key packaging parameters of phospholipids play a crucial role in formulation design. They serve multiple functions as solubilizers, emulsifiers, surfactants, penetration enhancers, coating agents, sustained release modifiers, and liposomes. BOC Sciences produces phospholipids using advanced synthesis techniques and state-of-the-art equipment, which ensures that phospholipid products are of the highest quality and meet the most stringent industry standards. We have a team of experienced professionals who provide reliable customer support and provide guidance throughout the ordering and product selection process.
What is Phospholipid?
Phospholipids are lipids that contain carbon, hydrogen, oxygen, and phosphate groups. The structure consists of a glycerol backbone that is esterified with fatty acid chains at positions 1 and 2, while the phosphate group at position 3 is further esterified with a polar moiety (alcohol). The polar headgroup imparts hydrophilicity, while the attached fatty acid chains impart hydrophobicity (non-polar regions) to the phospholipid molecule. Therefore, phospholipids are amphipathic. Four different functional groups attached to the second carbon of the glycerol moiety endow the phospholipid molecule with chirality. Variations in attached polar headgroups, main chains, and fatty acid side chains result in different properties. The backbone of phospholipids can be glycerol or sphingosine. Polar headgroups attach to phosphatidic acid to form phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI) or phosphatidylglycerol (PG). Sphingosines form the class of sphingomyelin (SM). Some of the fatty acid chains that can be attached are disterol (DS), dipalmitol (DP), dimyristol (DM) and dioleoyl (DO). Fatty acid chains can be saturated or unsaturated.
Fig. 1. Phospholipid bilayer structure (Biochemical Pharmacology. 2022, 206: 115296).
Origin of Phospholipids
Phospholipids can be natural, semi-synthetic or synthetic. Phospholipids are mainly derived from various plants (vegetable oils extracted from soybean, sunflower, corn, and cottonseed) and animal sources (animal tissues such as bovine brain and egg yolk). Phospholipids of vegetable and animal origin contain different amounts and types of lipids. Yolk phospholipids mainly contain sphingomyelin backbone and long-chain polyunsaturated fatty acids. Compared with soybean phospholipids, egg yolk phospholipids have higher saturation, higher PC content and better oxidation stability. The oxidative stability of lipids is directly related to the number of double bonds on the fatty acid side chains. Natural phospholipids can be partially or completely modified by chemical or enzymatic methods to produce semi-synthetic and synthetic phospholipids with desired properties, respectively. Synthetic or semi-synthetic lipids are expensive compared to natural lipids. Where possible, natural phospholipids should be chosen for formulation development because they can be produced in large quantities in a renewable manner at low cost. However, synthetic phospholipids yield stable structures compared to natural phospholipids.
Properties of Phospholipids
Solubility
The solubility of phospholipids depends on the polar head group and fatty acid side chains. According to solubility, they are classified as Class 1: insoluble phospholipids (waxes) that do not absorb water; Class 2: very low solubility phospholipids that swell in water, such as PCs, PEs or SM; Class 3A: soluble phospholipids , forming soluble liquid crystals at low water content, such as ly solecithins; Class 3B: soluble phospholipids, forming micelles, such as saponin.
Surface Charge
The surface charge acquired by phospholipids when dispersed in water depends on the head group and the pH of the medium. At pH 7, phospholipids containing PC and PE headgroups have a neutral charge (zwitterions), while phospholipids containing PS, PI, and PG headgroups have a negative charge. The cationic charge on the phospholipid head facilitates the attraction of the nanoparticles to the cell membrane, increasing the rate of cellular incorporation. Thus, the positively charged nanoparticles on the surface (provided by PE at skin pH) are attracted to cell membranes, thereby enhancing skin penetration.
Phase Transition Temperature (PTT)
The temperature at which phospholipids change from a gel (highly ordered) to a liquid crystalline phase (disordered) is called the phase transition temperature. It depends on the polar head group, the length of the fatty acid side chain, the degree of saturation of the fatty acid side chain and the purity of the phospholipid. The PTT of the PE header group is higher than the PTT of the PC or PG header group. This is related to the stronger head-group interaction of the former. Phospholipids with longer side chains have a higher PTT compared to phospholipids with shorter side chains because more energy is required to break bonds. Likewise, saturated phospholipids show higher PTT. Phospholipids composed of polyunsaturated side chains can exhibit PTTs even below 0℃. Phospholipid bilayer assemblies (liposomes) made of low-PTT lipids (below 37℃) have been reported to be leaky. They are readily taken up by macrophages in the blood. Therefore, lipids with high PTT need to be preferentially selected if longer circulation time and controlled release are desired from these nanoparticles.
Polymorphism
Phospholipids dispersed in water can exist in various forms, depending on the degree and type of hydration of the phospholipids. They can form two-dimensional layered structures or different gel phases. They can exist as three-dimensional spherical, cubic, hexagonal or cylindrical structures. The different polymorphic forms play an important role in modifying the release of the drug and the stability of the formed nanoaggregate. The type of structure formed depends on the size of the polar head group, the degree of saturation of the side chains, the concentration of phospholipids, temperature, ionic strength, pH, the presence of other molecules such as steroids, oils, or divalent cations such as calcium.
Stability of Formed Structures
Nanoparticles formed from phospholipids tend to aggregate. Strong van der Waals attraction is the main cause of uncharged particle aggregation. Charged nanoparticles are considered to be more stable compared to uncharged particles. This can be explained by DLVO theory. A charged surface attracts several counterion shells towards it. These bilayer forces are responsible for the stability of the nanoparticles. Molecular dynamics simulations predict that polar heads have sufficient force to induce bilayer-bilayer repulsion pulses. Although there is a chance that two vesicles will fuse together upon contact.
Reference
- Morita, S. et al. Regulation of membrane phospholipid biosynthesis in mammalian cells. Biochemical Pharmacology. 2022, 206: 115296.
Why BOC Sciences?
-
Large Stock
More than 2000+ products in inventory
-
Global Delivery
Warehouses in multiple cities to ensure fast delivery
-
mg to kg
Multi specification for academic research and industrial production
-
24/7 Technical Support
Strict process parameter control to ensure product quality
Technical Support
- Aqueous Two-Phase System (ATPS) Technique
- Capillary Electrophoresis (CE) Technique
- Enzyme-linked immunosorbent assay (ELISA) Technique
- High performance liquid chromatography (HPLC) Technique
- Hydrophobic Interaction Chromatography (HIC) Technique
- PEGylated Protein Purification Techniques
- Radiolabeling Technique
- SDS-PAGE Technique
- Ultrafiltration Technique
Products
- Lipids
- PEG Derivatives by Structure
-
PEG Derivatives by Functional Group
- Acrylate/Acrylamide/Methacrylate PEG
- Aldehyde (Ald/CHO)PEG
- Alkyne PEG
- Amino PEG, PEG amine(-NH2)
- Azide PEG, Azido PEG(-N3)
- Biotin PEG
- Boc/Fmoc protected amine PEG
- Carboxylic Acid(-COOH) PEG
- Cholesterol PEG
- DBCO PEG
- DNP PEG
- DSPE PEG
- Epoxide glycidyl ether PEG
- FITC PEG
- Folate PEG
- Halide (chloride, bromide) PEG
- Hydrazide PEG
- Hydroxyl(-OH) PEG
- Maleimide(-MAL) PEG
- NHS ester PEG
- Nitrophenyl carbonate (NPC) PEG
- Norbornene PEG
- Olefin/Alkene/Vinyl PEG
- Orthopyridyl disulfide (OPSS) PEG
- Phosphate PEG
- Rhodamine PEG
- SCM PEG
- Silane PEG
- SPDP PEG
- Sulfonate (tosyl, mesyl, tresyl) PEG
- tert-Butyl protected carboxylate PEG
- Thiol(-SH) PEG
- Vinylsulfone PEG
- PEG Copolymers
-
PEG Raw Materials
- Small-molecule Polyethylene Glycol
- Polyethylene Glycol 1000
- Polyethylene Glycol 10000
- Polyethylene Glycol 1500
- Polyethylene Glycol 200
- Polyethylene Glycol 2000
- Polyethylene Glycol 20000
- Polyethylene Glycol 400
- Polyethylene Glycol 4000
- Polyethylene Glycol 600
- Polyethylene Glycol 6000
- Polyethylene Glycol 800
- Polyethylene Glycol 8000
Resources
-
Technical Information
- Aqueous Two-Phase System (ATPS) Technique
- Capillary Electrophoresis (CE) Technique
- Enzyme-linked immunosorbent assay (ELISA) Technique
- High performance liquid chromatography (HPLC) Technique
- How to Perform Polyethylene Glycol (PEG) Modification?
- Hydrophobic Interaction Chromatography (HIC) Technique
- Introduction of Polyethylene Glycol (PEG)
- Ion Exchange Chromatography (IEX) Technique
- PEG for Chemical Synthesis
- PEG for Cosmetic Application
- PEG for Drug Delivery
- PEG for Imaging Diagnosis
- PEG for Pharmaceutical Preparation
- PEG for Tissue Engineering
- PEG Purification Techniques of Plasmid DNA
- PEGylated Protein Purification Techniques
- Polyethylene Glycol (PEG) Modifier Selection Guide
- Radiolabeling Technique
- SDS-PAGE Technique
- Size Exclusion Chromatography (SEC) Technique
- Ultrafiltration Technique
-
Industry News
- Applications of PEG-DSPE: Drug Carriers and Drug Delivery
- Applications of Polyethylene Glycol (PEG) as Medical Devices
- Cholesterol: Definition, Structure, Synthesis, Types and Functions
- Classification of Lipid-Based Vaccine Adjuvants
- FDA approved PEGylated Products
- FDA-Approved Antibody-Drug Conjugates up to 2024
- How are Liposomes Different from Micelles?
- How Lipid Nanoparticles (LNPs) Deliver RNA Drugs?
- Hyaluronic Acid & PEGylated Hyaluronic Acid
- Ionizable Lipids for RNA Delivery
- Lipid Classification and Drug Delivery Systems
- Lipid Formulations: Key Absorption-Enhancing Technologies in New Drug Development
- Lipid-Drug Conjugates (LDCs) for Nanoparticle Drug Delivery
- Liposome in Drug Delivery
- Overview of Liposome Preparation Process
- PEG in Pharmaceutical Preparations (I): Solvents, Lubricants, Adhesives and More
- PEG in Pharmaceutical Preparations (II): Stabilizers, Plasticizers and Modification Materials
- PEG Linkers in Antibody Drug Conjugates and PROTACs
- PEG-DSPE Block Copolymers and Their Derivatives
- PEGylated Drugs: Definition, Structure, Classification and Benefits
- PEGylated RGD Peptides: A Promising Tool for Targeted Drug Delivery
- Pharmacokinetics and Bioanalysis of PEGylated Drugs
- Polyethylene Glycol (PEG) Modified Targeting Nanomaterials
- Preparation Method of PEG Hydrogel
- The PROTAC Technology in Drug Development
- Vaccines: Definition, History, Ingredients, Types and Mechanism of Action
- What are Lipid Excipients and Their Applications?
- What are Lipid Nanoparticles and Their Applications?
- What are Lipid-Drug Conjugates (LDCs)?
- What are Lipids?
- What are Monodispersed and Polydispersed PEGs?
- What are PEG Lipids?
- What are Phospholipids?
- What are Sterols? - Definition, Structure, Function, Examples and Uses
- What is Biotinylation and Biotinylated PEG?
- What is Click Chemistry?
- What is Hydrogel?
- What is Methoxy Polyethylene Glycol (mPEG)?
- What is Nanogels and Its Applications?
- What is the Formulation of Lipid Nanoparticles (LNPs)?
Our Feature
BOC Sciences supplies a unique variety of PEG derivatives and functional PEG polymers. Our products offer the most diverse collection of reactivity, ready-to-use functionality, and molecular weight options that you will not find anywhere else.
PEGylation of Peptides
and Proteins
Reduce the Immunogenicity of Peptide/Protein Drugs
Learn More
APPLICATIONS
PEG linkers For Drug
Improved Circulation Half-Life
Learn More
Have Customer Reviewed On Us?
Chat With Us