Click Reagents
What is Click Chemistry?
Click chemistry can quickly and reliably complete the chemical synthesis of various molecules through the splicing of small units. It places particular emphasis on opening up new methods of combinatorial chemistry based on the synthesis of carbon-heteroatom bonds (C-X-C), and with the help of these reactions (click reactions) to obtain molecular diversity simply and efficiently. Click chemistry has good applications in many fields such as drug development, biomedical material optimization, biomolecular labeling and detection, and has become one of the most popular research fields. Click chemistry complies with the 12 principles of green chemistry and has the following characteristics:
(1) Reaction modularization, such as azide and alkynyl can generate triazole compounds;
(2) Raw materials are easy to obtain and have a wide range of applications;
(3) High reaction yield, good regio and stereoselectivity;
(4) Simple operation, mild reaction conditions, not afraid of water and oxygen;
(5) The product is easy to separate and purify, and can be separated by recrystallization or distillation without chromatographic column separation;
(6) Most reactions involve the formation of carbon-heteroatom (mainly nitrogen, oxygen, sulfur) bonds;
(7) The reaction requires a high thermodynamic driving force (>84kJ/mol);
(8) Click reactions are generally chemical compounds (no by-products) or condensation reactions (products are small molecules such as water).
Fig. 1. Click chemistry reaction.
Applications of Lipids in Click Chemistry
Lipid reagents can participate in click reactions such as copper-catalyzed azide-alkyne cycloaddition (CuAAC) or strain-promoted azide-alkyne cycloaddition (SPAAC). These reactions allow efficient and specific modification of lipids with various functional groups, enabling the synthesis of lipid-based probes, sensors, and imaging agents. In addition, lipid reagents can be used for bioorthogonal labeling of lipids in cells and organisms. This enables the visualization and tracking of lipid metabolism, lipid-protein interactions, and lipid signaling pathways. For example, trifunctional sphingosine can be used to attach various biomolecules such as proteins or antibodies to surfaces or other biomolecules. The azido group can react with other alkyne-containing molecules through the CuAAC reaction to form a stable triazole bond.
DBCO Reagent
DBCO (dibenzocyclooctyne) is a cyclic alkyne that reacts with azide in aqueous solution via a strain-promoted 1,3-dipolar cycloaddition, a bioorthogonal reaction also known as copper click reaction. The reaction exhibits excellent selectivity and biocompatibility, allowing complementary reagents to form covalent bonds with functionally rich biological systems. Copper-free click reactions have emerged as powerful tools for catalyst-free bioconjugation. DBCO reagents (such as 18:1 DBCO PE and 16:0 DBCO PE Ammonium salt) have fast kinetics and stability in aqueous buffers and can be used to label azide-modified biomolecules with high specificity and reactivity.
Fig. 2. DBCO reagent for click chemistry.
BOC Sciences is a leading supplier of lipid click reagents for lipid labeling and detection in a variety of research applications. BOC Sciences offers a wide variety of lipid click reagents, including azide- or alkyne-functionalized lipids, phospholipids, cholesterol, and fatty acids. The company has state-of-the-art facilities and equipment that can synthesize lipid click reagents on a large scale to meet the needs of customers. In addition to providing standard lipid click reagents, BOC Sciences also offers custom synthesis services. Customers can request specific modifications to lipid click reagents based on their research needs.
Why BOC Sciences?
-
Large Stock
More than 2000+ products in inventory
-
Global Delivery
Warehouses in multiple cities to ensure fast delivery
-
mg to kg
Multi specification for academic research and industrial production
-
24/7 Technical Support
Strict process parameter control to ensure product quality
Technical Support
- Aqueous Two-Phase System (ATPS) Technique
- Capillary Electrophoresis (CE) Technique
- Enzyme-linked immunosorbent assay (ELISA) Technique
- High performance liquid chromatography (HPLC) Technique
- Hydrophobic Interaction Chromatography (HIC) Technique
- PEGylated Protein Purification Techniques
- Radiolabeling Technique
- SDS-PAGE Technique
- Ultrafiltration Technique
Products
- Lipids
- PEG Derivatives by Structure
-
PEG Derivatives by Functional Group
- Acrylate/Acrylamide/Methacrylate PEG
- Aldehyde (Ald/CHO)PEG
- Alkyne PEG
- Amino PEG, PEG amine(-NH2)
- Azide PEG, Azido PEG(-N3)
- Biotin PEG
- Boc/Fmoc protected amine PEG
- Carboxylic Acid(-COOH) PEG
- Cholesterol PEG
- DBCO PEG
- DNP PEG
- DSPE PEG
- Epoxide glycidyl ether PEG
- FITC PEG
- Folate PEG
- Halide (chloride, bromide) PEG
- Hydrazide PEG
- Hydroxyl(-OH) PEG
- Maleimide(-MAL) PEG
- NHS ester PEG
- Nitrophenyl carbonate (NPC) PEG
- Norbornene PEG
- Olefin/Alkene/Vinyl PEG
- Orthopyridyl disulfide (OPSS) PEG
- Phosphate PEG
- Rhodamine PEG
- SCM PEG
- Silane PEG
- SPDP PEG
- Sulfonate (tosyl, mesyl, tresyl) PEG
- tert-Butyl protected carboxylate PEG
- Thiol(-SH) PEG
- Vinylsulfone PEG
- PEG Copolymers
-
PEG Raw Materials
- Small-molecule Polyethylene Glycol
- Polyethylene Glycol 1000
- Polyethylene Glycol 10000
- Polyethylene Glycol 1500
- Polyethylene Glycol 200
- Polyethylene Glycol 2000
- Polyethylene Glycol 20000
- Polyethylene Glycol 400
- Polyethylene Glycol 4000
- Polyethylene Glycol 600
- Polyethylene Glycol 6000
- Polyethylene Glycol 800
- Polyethylene Glycol 8000
Resources
-
Technical Information
- Aqueous Two-Phase System (ATPS) Technique
- Capillary Electrophoresis (CE) Technique
- Enzyme-linked immunosorbent assay (ELISA) Technique
- High performance liquid chromatography (HPLC) Technique
- How to Perform Polyethylene Glycol (PEG) Modification?
- Hydrophobic Interaction Chromatography (HIC) Technique
- Introduction of Polyethylene Glycol (PEG)
- Ion Exchange Chromatography (IEX) Technique
- PEG for Chemical Synthesis
- PEG for Cosmetic Application
- PEG for Drug Delivery
- PEG for Imaging Diagnosis
- PEG for Pharmaceutical Preparation
- PEG for Tissue Engineering
- PEG Purification Techniques of Plasmid DNA
- PEGylated Protein Purification Techniques
- Polyethylene Glycol (PEG) Modifier Selection Guide
- Radiolabeling Technique
- SDS-PAGE Technique
- Size Exclusion Chromatography (SEC) Technique
- Ultrafiltration Technique
-
Industry News
- Applications of PEG-DSPE: Drug Carriers and Drug Delivery
- Applications of Polyethylene Glycol (PEG) as Medical Devices
- Cholesterol: Definition, Structure, Synthesis, Types and Functions
- Classification of Lipid-Based Vaccine Adjuvants
- FDA approved PEGylated Products
- FDA-Approved Antibody-Drug Conjugates up to 2024
- How are Liposomes Different from Micelles?
- How Lipid Nanoparticles (LNPs) Deliver RNA Drugs?
- Hyaluronic Acid & PEGylated Hyaluronic Acid
- Ionizable Lipids for RNA Delivery
- Lipid Classification and Drug Delivery Systems
- Lipid Formulations: Key Absorption-Enhancing Technologies in New Drug Development
- Lipid-Drug Conjugates (LDCs) for Nanoparticle Drug Delivery
- Liposome in Drug Delivery
- Overview of Liposome Preparation Process
- PEG in Pharmaceutical Preparations (I): Solvents, Lubricants, Adhesives and More
- PEG in Pharmaceutical Preparations (II): Stabilizers, Plasticizers and Modification Materials
- PEG Linkers in Antibody Drug Conjugates and PROTACs
- PEG-DSPE Block Copolymers and Their Derivatives
- PEGylated Drugs: Definition, Structure, Classification and Benefits
- PEGylated RGD Peptides: A Promising Tool for Targeted Drug Delivery
- Pharmacokinetics and Bioanalysis of PEGylated Drugs
- Polyethylene Glycol (PEG) Modified Targeting Nanomaterials
- Preparation Method of PEG Hydrogel
- The PROTAC Technology in Drug Development
- Vaccines: Definition, History, Ingredients, Types and Mechanism of Action
- What are Lipid Excipients and Their Applications?
- What are Lipid Nanoparticles and Their Applications?
- What are Lipid-Drug Conjugates (LDCs)?
- What are Lipids?
- What are Monodispersed and Polydispersed PEGs?
- What are PEG Lipids?
- What are Phospholipids?
- What are Sterols? - Definition, Structure, Function, Examples and Uses
- What is Biotinylation and Biotinylated PEG?
- What is Click Chemistry?
- What is Hydrogel?
- What is Methoxy Polyethylene Glycol (mPEG)?
- What is Nanogels and Its Applications?
- What is the Formulation of Lipid Nanoparticles (LNPs)?
Our Feature
BOC Sciences supplies a unique variety of PEG derivatives and functional PEG polymers. Our products offer the most diverse collection of reactivity, ready-to-use functionality, and molecular weight options that you will not find anywhere else.
PEGylation of Peptides
and Proteins
Reduce the Immunogenicity of Peptide/Protein Drugs
Learn More
APPLICATIONS
PEG linkers For Drug
Improved Circulation Half-Life
Learn More
Have Customer Reviewed On Us?
Chat With Us