PEGylation of Nanocarriers
Nanocarriers, such as micelles, liposomes, polymeric nanoparticles and inorganic nanoparticles are promising tools for controlled drug delivery or imaging in cancer therapy and many other applications. Up to date, a number of nanocarriers have been approved for clinical treatment of a variety of therapeutics. Our enormous knowledge, advanced skills and excellent capabilities will provide you with the most optimized synthesis route, the PEGylated products with the best quality, and offer you a value-added service to meet development needs.
Fig. 1 Schematic representation of different nanocarriers with the PEG-exposed surface. (Journal of controlled release 2014, 192, 67-81)
Our services include but not limited as following:
PEGylation of Polymeric Nanoparticles
Fig.2 Schematic diagram of formation of PEGylated lecithin-chitosan nanoparticle. (AAPS PharmSciTech 2020, 21 (7), 285)
Biodegradable polymeric nanoparticles have many advantages for drug delivery, such as controlled release and targeting. However, after intravenous administration of polymeric nanoparticles, they will be cleared by the endothelial reticulum system within a few seconds or minutes. In order to overcome this shortcoming, hydrophilic PEG is introduced to modify the polymer. The introduction of PEG will not only affect the biodegradation behavior of nanoparticles, but also affect the release and distribution of drugs in the body. Polymeric nanoparticles are usually PEGylated by (1) physical surface coverage with PEG or PEG derivatives, (2) preparation of nanoparticles with PEG block co-polymers and (3) grafting PEG onto the nanoparticles surface.
PEGylation of Inorganic Nanoparticles
Fig.3 Schematic illustration of the function of PEG to prevent uptake by the reticuloendothelial system. (Nanomedicine 2011, 6 (4), 715-728.)
Inorganic nanoparticles made of calcium phosphate, gold, silica and iron oxide are preferred for drug delivery due to ease of preparation and uniform size and amenability for surface functionalization. However, these are less stable and could be toxic in biological systems. Therefore, in order to improve the biological stability and biocompatibility, surface modification has been carried out with PEG.
PEGylation of Liposomes
Fig.4 Schematic diagram of PEGylated liposome.
Liposome is an ideal drug delivery carrier. It has targeted properties, longer blood retention time and higher organ distribution selectivity, can improve the efficacy of drugs and reduce toxic side effects. Ordinary liposomes have the disadvantage of being easily cleared from the systemic circulation by liver and spleen macrophages. In this case, PEGylation can solve the above shortcomings, making liposomes stay in the blood for a longer time and increasing the passive targeting function of drugs. Moreover, it is simple to prepare PEG-phospholipid derivatives in advance, which has become the current research focus of PEGylation technique.
PEGylation of Micelles
Fig.5 Schematic representation of the micelle formation using heterobifunctional PEG and PEG derivatives. (Advanced drug delivery reviews 2003, 55 (3), 403-419)
Micelles are frequently preferred choice for anticancer drug delivery. Preparation of PEGylated micelles mostly utilizes PEGylated polymers or lipids through synthetic approaches. Block copolymer micelles with PEG coronas have emerged as systems with great potential in drug delivery, as they combine biocompatibility with the synthetic versatility of PEG. A variety of activated PEGs can be used exploited for these systems, such as block copolymer structures, providing control over the type and stability of covalent. linkage formed.
Why Us?
PEGylation Service Process
Reference
- Kolate, A.; Baradia, D.; et al. PEG - a versatile conjugating ligand for drugs and drug delivery systems. Journal of controlled release : official journal of the Controlled Release Society 2014, 192, 67-81.
- Howard, M. D.; Jay, M.; et al. PEGylation of nanocarrier drug delivery systems: state of the art. Journal of Biomedical Nanotechnology 2008, 4 (2), 133-148.
- Jokerst, J. V.; Lobovkina, T.; Zare, R. N.; Gambhir, S. S., Nanoparticle PEGylation for imaging and therapy. Nanomedicine 2011, 6 (4), 715-728.
- Otsuka, H.; Nagasaki, Y.; Kataoka, K., PEGylated nanoparticles for biological and pharmaceutical applications. Advanced drug delivery reviews 2003, 55 (3), 403-419.
- Mahmood, S.; Kiong, K. C.; et al. PEGylated Lipid Polymeric Nanoparticle–Encapsulated Acyclovir for In Vitro Controlled Release and Ex Vivo Gut Sac Permeation. AAPS PharmSciTech 2020, 21 (7), 285.
Why BOC Sciences?
-
Large Stock
More than 2000+ products in inventory
-
Global Delivery
Warehouses in multiple cities to ensure fast delivery
-
mg to kg
Multi specification for academic research and industrial production
-
24/7 Technical Support
Strict process parameter control to ensure product quality
Technical Support
- Aqueous Two-Phase System (ATPS) Technique
- Capillary Electrophoresis (CE) Technique
- Enzyme-linked immunosorbent assay (ELISA) Technique
- High performance liquid chromatography (HPLC) Technique
- Hydrophobic Interaction Chromatography (HIC) Technique
- PEGylated Protein Purification Techniques
- Radiolabeling Technique
- SDS-PAGE Technique
- Ultrafiltration Technique
Products
- Lipids
- PEG Derivatives by Structure
-
PEG Derivatives by Functional Group
- Acrylate/Acrylamide/Methacrylate PEG
- Aldehyde (Ald/CHO)PEG
- Alkyne PEG
- Amino PEG, PEG amine(-NH2)
- Azide PEG, Azido PEG(-N3)
- Biotin PEG
- Boc/Fmoc protected amine PEG
- Carboxylic Acid(-COOH) PEG
- Cholesterol PEG
- DBCO PEG
- DSPE PEG
- Epoxide glycidyl ether PEG
- FITC PEG
- Halide (chloride, bromide) PEG
- Hydrazide PEG
- Hydroxyl(-OH) PEG
- Maleimide(-MAL) PEG
- Multi-Arm PEG
- NHS ester PEG
- Nitrophenyl carbonate (NPC) PEG
- Norbornene PEG
- Olefin/Alkene/Vinyl PEG
- Orthopyridyl disulfide (OPSS) PEG
- Phosphate PEG
- Rhodamine PEG
- SCM PEG
- Silane PEG
- Sulfonate (tosyl, mesyl, tresyl) PEG
- tert-Butyl protected carboxylate PEG
- Thiol(-SH) PEG
- Vinylsulfone PEG
- PEG Copolymers
-
PEG Raw Materials
- Small-molecule Polyethylene Glycol
- Polyethylene Glycol 1000
- Polyethylene Glycol 10000
- Polyethylene Glycol 1500
- Polyethylene Glycol 200
- Polyethylene Glycol 2000
- Polyethylene Glycol 20000
- Polyethylene Glycol 400
- Polyethylene Glycol 4000
- Polyethylene Glycol 600
- Polyethylene Glycol 6000
- Polyethylene Glycol 800
- Polyethylene Glycol 8000
Resources
-
Technical Information
- Aqueous Two-Phase System (ATPS) Technique
- Capillary Electrophoresis (CE) Technique
- Enzyme-linked immunosorbent assay (ELISA) Technique
- High performance liquid chromatography (HPLC) Technique
- Hydrophobic Interaction Chromatography (HIC) Technique
- Introduction of Polyethylene Glycol (PEG)
- Ion Exchange Chromatography (IEX) Technique
- PEG for Chemical Synthesis
- PEG for Cosmetic Application
- PEG for Drug Delivery
- PEG for Imaging Diagnosis
- PEG for Pharmaceutical Preparation
- PEG for Tissue Engineering
- PEG Purification Techniques of Plasmid DNA
- PEGylated Protein Purification Techniques
- Radiolabeling Technique
- SDS-PAGE Technique
- Size Exclusion Chromatography (SEC) Technique
- Ultrafiltration Technique
-
Industry News
- Applications of Polyethylene Glycol (PEG) as Medical Devices
- FDA approved PEGylated Products
- How are Liposomes Different from Micelles?
- PEG Linkers in Antibody Drug Conjugates and PROTACs
- Polyethylene Glycol (PEG) Modified Targeting Nanomaterials
- What are Lipids?
- What are Monodispersed and Polydispersed PEGs?
- What are Phospholipids?
- What is Click Chemistry?
- What is Hydrogel?
Our Feature
BOC Sciences supplies a unique variety of PEG derivatives and functional PEG polymers. Our products offer the most diverse collection of reactivity, ready-to-use functionality, and molecular weight options that you will not find anywhere else.

PEGylation of Peptides
and Proteins
Reduce the Immunogenicity of Peptide/Protein Drugs
Learn More
APPLICATIONS

PEG linkers For Drug
Improved Circulation Half-Life
Learn More
Have Customer Reviewed On Us?
Chat With Us