PEG for Chemical Synthesis
The application of PEG in chemical synthesis has a long history. It has been widely used in combinatorial chemistry and organic chemistry. It can provide homogeneous reaction conditions and has the advantages of easy purification and easy analysis. Therefore, using PEG as a solvent and/or catalyst has been increasingly applied in laboratory research and industrial production.
PEG as A Solvent
As a solvent, research in recent years tends to be "green" of PEG. With the excellent viscosity, low toxicity, thermal stability, low price, non-volatility, biodegradability, and environmentally friendly characteristics at both room temperature and high temperature, PEG has received more and more attention in synthetic chemistry and heterogeneous catalysis, such as Heck reaction, Suzuki coupling reaction, oxidation reaction, reduction reaction, addition reaction and asymmetric Aldo reaction.
- Heck Reaction
Fig 1. Chemical synthesis route of Heck reaction. (Organic letters 2002, 4 (25), 4399-4401)
Heck reaction refers to the reaction of halogenated hydrocarbons and activated unsaturated hydrocarbons to produce trans products under palladium catalysis. Using poly(ethylene glycol) (PEG) with molecular weight 2000 (or lower) as an efficient reaction medium for Pd-catalyzed C-C bond formation is more rapid and high yielding, and the catalyst is easily recycled with high efficiency.
- Suzuki Reaction
Fig 2. Chemical synthesis route of Suzuki reaction. (Journal of Molecular Liquids 2015, 207, 73-79)
Suzuki reaction (also known as Suzuki–Miyaura reaction) is a palladium catalyzed carbon–carbon bond formation between organoboron compounds with aromatic halides. The research reported in 2001 shown that this reaction was preceded in high yield in PEG400 as an inexpensive and non-toxic reaction medium.
- Sonogashira Coupling Reaction
Fig 3. Chemical synthesis route of Sonogashira reaction. (Journal of Molecular Liquids 2015, 207, 73-79)
Pd-catalyst carbon–carbon bond formation between a terminal alkyne and an aryl or vinyl halide is known as Sonogashira coupling reaction. The first study of this reaction was performed in PEG 6000 as reaction medium and a polymeric PEG-PdL catalyst with high catalytic reusability potential for ten times in the Sonogashira reaction of 4-bromoacetophenone and phenylacetylene.
- Hiyama reaction
Fig 4. Chemical synthesis route of Hiyama reaction. (Journal of Molecular Liquids 2015, 207, 73-79)
The Hiyama-coupling is a palladium-catalyzed cross-coupling reaction of organosilanes with organic halides discovered by Hiyama and Hatanaka in 1988. In 2007, researchers first developed a fluoride-free catalyst system employing Pd(OAc)2 in a mixture containing 3 mL of H2O and 3 g of PEG2000 as solvent.
- Ullmann's Homocoupling Reaction
Fig 5. Chemical synthesis route of homocoupling of aryl halides in PEG 4000. (Journal of Molecular Liquids 2015, 207, 73-79)
PEG 4000 is very useful for preparation of symmetrical biaryls is Ullmann homocoupling reaction of aryl halides(I and Br). In this reaction, PEG acts as solvent, phase transfer catalyst (PTC) and as a reducing agent. The flexibility of this catalytic system also provides suitable condition for cross coupling reactions of aryl iodide with aryl bromide.
- Michael addition
Fig 6. Chemical synthesis route of asymmetric Michael addition in PEG 400 as solvent. (Journal of Molecular Liquids 2015, 207, 73-79)
Asymmetric organocatalytic Michael reaction is a powerful tool for carbon–carbon bonds formation since the products participate in the important biologically active compounds. As shown in Fig 5, nitrostyrene substrates bear the β-aryl substituent with withdrawing -NO2 group gave the corresponding Michael derivative in quantitative yield with good diastereomeric ratios.
PEG as A Catalyst
In terms of catalysis, since the chain structure of PEG can be folded into holes of different sizes, the chain links can be folded into spiral and free sliding chains to form a shape similar to crown ether, so it can complex with metal ions of different sizes to carry out the phase transfer catalytic reaction. Although the reaction effect is not good in liquid-liquid phase, it still has a good catalytic effect on the reaction of sodium, potassium and other metal salts. For reactions involving different salts, PEG 400-1000 is a commonly used phase transfer catalyst (PTC). Studies have shown that PEG 400, due to its moderate molecular weight, especially the high relative ratio of two polar terminal hydroxyl groups, is more suitable for catalyzing sodium and potassium salts in many liquid-liquid, gas-liquid, and gas- solid, solid-liquid two-phase organic chemical reactions. Because of the strong water solubility, the catalyst and salt by-products can be easily washed away with water after the reaction is completed, greatly simplifying the post-processing.
- Williamson Ether Synthesis
Williamson synthesis is a method of preparing mixed ethers. It is an important nucleophilic substitution reaction (SN2) and involves the synthesis of an ether using an alkyl halide and an alkoxide in an alcoholic solvent. The novel Williamson reaction has been successfully conducted in a liquid–solid or liquid–liquid biphasic system using PEG as PTC with or without organic solvent. The yield of decan-1-ol during etherification using PEG-2000 as PTC is equal to that found by using 18-crown-6, and higher than that found by using cryptand, which are both expensive and toxic.
- Substitution Reactions
One of the most common reactions for the application of PEGs as PTCs is in nucleophilic substitution reaction. For example, the diaryl 1,4-phenylenedioxydiacetic acid and diaryl 1,4-phenylenedioxydiacetate synthesis using PEG 400 as PTC showed good to excellent yields under mild conditions, with short reaction times and simple operation. N-Acylation reactions, normally considered difficult, could be conducted using PEG 400 as PTC with high yield.
- PEG-supported PTC
Apart from its own catalytic activity, PEG has also been used as a polymer support for other PTCs. PEG has been modified with some typical PTCs such as crown ethers, ammonium salts, cryptands, and polypodands to enhance phase-transfer in two-phase reactions. For instance, 16-crown-5, 19-crown-6, and 18-crown-6 ethers have been attached to PEG 3400 and PEG 6800 and demonstrated effective transfer of metal picrates from H2O into CH2Cl2, which were able to catalyze the reaction of CH3COOK with benzyl bromide.
References
- Chen, J.; Spear, S. K.; Huddleston, J. G.; Rogers, R. D., Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chemistry 2005, 7 (2), 64-82.
- Chandrasekhar, S.; Narsihmulu, C.; et al. Poly (ethylene glycol)(PEG) as a reusable solvent medium for organic synthesis. Application in the Heck reaction. Organic letters 2002, 4 (25), 4399-4401.
- Vafaeezadeh, M.; Hashemi, M. M., Polyethylene glycol (PEG) as a green solvent for carbon–carbon bond formation reactions. Journal of Molecular Liquids 2015, 207, 73-79.
Why BOC Sciences?
-
Large Stock
More than 2000+ products in inventory
-
Global Delivery
Warehouses in multiple cities to ensure fast delivery
-
mg to kg
Multi specification for academic research and industrial production
-
24/7 Technical Support
Strict process parameter control to ensure product quality
Technical Support
- Aqueous Two-Phase System (ATPS) Technique
- Capillary Electrophoresis (CE) Technique
- Enzyme-linked immunosorbent assay (ELISA) Technique
- High performance liquid chromatography (HPLC) Technique
- Hydrophobic Interaction Chromatography (HIC) Technique
- PEGylated Protein Purification Techniques
- Radiolabeling Technique
- SDS-PAGE Technique
- Ultrafiltration Technique
Products
- Lipids
- PEG Derivatives by Structure
-
PEG Derivatives by Functional Group
- Acrylate/Acrylamide/Methacrylate PEG
- Aldehyde (Ald/CHO)PEG
- Alkyne PEG
- Amino PEG, PEG amine(-NH2)
- Azide PEG, Azido PEG(-N3)
- Biotin PEG
- Boc/Fmoc protected amine PEG
- Carboxylic Acid(-COOH) PEG
- Cholesterol PEG
- DBCO PEG
- DNP PEG
- DSPE PEG
- Epoxide glycidyl ether PEG
- FITC PEG
- Folate PEG
- Halide (chloride, bromide) PEG
- Hydrazide PEG
- Hydroxyl(-OH) PEG
- Maleimide(-MAL) PEG
- NHS ester PEG
- Nitrophenyl carbonate (NPC) PEG
- Norbornene PEG
- Olefin/Alkene/Vinyl PEG
- Orthopyridyl disulfide (OPSS) PEG
- Phosphate PEG
- Rhodamine PEG
- SCM PEG
- Silane PEG
- SPDP PEG
- Sulfonate (tosyl, mesyl, tresyl) PEG
- tert-Butyl protected carboxylate PEG
- Thiol(-SH) PEG
- Vinylsulfone PEG
- PEG Copolymers
-
PEG Raw Materials
- Small-molecule Polyethylene Glycol
- Polyethylene Glycol 1000
- Polyethylene Glycol 10000
- Polyethylene Glycol 1500
- Polyethylene Glycol 200
- Polyethylene Glycol 2000
- Polyethylene Glycol 20000
- Polyethylene Glycol 400
- Polyethylene Glycol 4000
- Polyethylene Glycol 600
- Polyethylene Glycol 6000
- Polyethylene Glycol 800
- Polyethylene Glycol 8000
Resources
-
Technical Information
- Aqueous Two-Phase System (ATPS) Technique
- Capillary Electrophoresis (CE) Technique
- Enzyme-linked immunosorbent assay (ELISA) Technique
- High performance liquid chromatography (HPLC) Technique
- How to Perform Polyethylene Glycol (PEG) Modification?
- Hydrophobic Interaction Chromatography (HIC) Technique
- Introduction of Polyethylene Glycol (PEG)
- Ion Exchange Chromatography (IEX) Technique
- PEG for Chemical Synthesis
- PEG for Cosmetic Application
- PEG for Drug Delivery
- PEG for Imaging Diagnosis
- PEG for Pharmaceutical Preparation
- PEG for Tissue Engineering
- PEG Purification Techniques of Plasmid DNA
- PEGylated Protein Purification Techniques
- Polyethylene Glycol (PEG) Modifier Selection Guide
- Radiolabeling Technique
- SDS-PAGE Technique
- Size Exclusion Chromatography (SEC) Technique
- Ultrafiltration Technique
-
Industry News
- Applications of PEG-DSPE: Drug Carriers and Drug Delivery
- Applications of Polyethylene Glycol (PEG) as Medical Devices
- Cholesterol: Definition, Structure, Synthesis, Types and Functions
- Classification of Lipid-Based Vaccine Adjuvants
- FDA approved PEGylated Products
- FDA-Approved Antibody-Drug Conjugates up to 2024
- How are Liposomes Different from Micelles?
- How Lipid Nanoparticles (LNPs) Deliver RNA Drugs?
- Hyaluronic Acid & PEGylated Hyaluronic Acid
- Ionizable Lipids for RNA Delivery
- Lipid Classification and Drug Delivery Systems
- Lipid Formulations: Key Absorption-Enhancing Technologies in New Drug Development
- Lipid-Drug Conjugates (LDCs) for Nanoparticle Drug Delivery
- Liposome in Drug Delivery
- Overview of Liposome Preparation Process
- PEG in Pharmaceutical Preparations (I): Solvents, Lubricants, Adhesives and More
- PEG in Pharmaceutical Preparations (II): Stabilizers, Plasticizers and Modification Materials
- PEG Linkers in Antibody Drug Conjugates and PROTACs
- PEG-DSPE Block Copolymers and Their Derivatives
- PEGylated Drugs: Definition, Structure, Classification and Benefits
- PEGylated RGD Peptides: A Promising Tool for Targeted Drug Delivery
- Pharmacokinetics and Bioanalysis of PEGylated Drugs
- Polyethylene Glycol (PEG) Modified Targeting Nanomaterials
- Preparation Method of PEG Hydrogel
- The PROTAC Technology in Drug Development
- Vaccines: Definition, History, Ingredients, Types and Mechanism of Action
- What are Lipid Excipients and Their Applications?
- What are Lipid Nanoparticles and Their Applications?
- What are Lipid-Drug Conjugates (LDCs)?
- What are Lipids?
- What are Monodispersed and Polydispersed PEGs?
- What are PEG Lipids?
- What are Phospholipids?
- What are Sterols? - Definition, Structure, Function, Examples and Uses
- What is Biotinylation and Biotinylated PEG?
- What is Click Chemistry?
- What is Hydrogel?
- What is Methoxy Polyethylene Glycol (mPEG)?
- What is Nanogels and Its Applications?
- What is the Formulation of Lipid Nanoparticles (LNPs)?
Our Feature
BOC Sciences supplies a unique variety of PEG derivatives and functional PEG polymers. Our products offer the most diverse collection of reactivity, ready-to-use functionality, and molecular weight options that you will not find anywhere else.
PEGylation of Peptides
and Proteins
Reduce the Immunogenicity of Peptide/Protein Drugs
Learn More
APPLICATIONS
PEG linkers For Drug
Improved Circulation Half-Life
Learn More
Have Customer Reviewed On Us?
Chat With Us