PEG & Tissue Engineering Solutions
PEG-containing polymers play an important role as biomaterials in diverse applications ranging from drug delivery to tissue engineering. These novel biodegradable materials offer great possibilities for modifying the bulk properties of biomaterials by improving biocompatibility and solubility. With years of practical PEG synthesis and research experience, BOC Sciences has introduced specific skills and expertise for producing high quality PEG. We provide world-class PEG & tissue engineering solutions at competitive prices.
PEG & PEG Gel & Tissue Engineering
PEG is a synthetic non-biodegradable polymer widely used as an artificial scaffold in tissue engineering research. PEG chains of any length can be readily synthesized by controlled polymerization of ethylene oxide or ethylene glycol in aqueous solution. Therefore, PEG is highly biocompatible and very suitable for hydrogels for biological research. PEG hydrogels have the advantage of hydrated structure, generally with high cytocompatibility and protein repellency, which can minimize inflammatory responses. Based on these characteristics, PEG-based hydrogels have been successfully used in a range of tissue engineering and cell delivery applications.
Fig. 1. Schematic of proposed mechanism for sol-gel transition (Materials Science and Engineering: C. 2019, 97: 1021-1035).
The chemical structure of PEG and its derivatives plays an important role in regulating the hydrophilicity, biodegradability, mechanical properties, bioreactivity, and protein repellency of PEG-based micelles, films, and hydrogels. The common structural modification of PEG is attached to biodegradable poly(lactic acid) (PLA), poly(propylene oxide) (PPO), and poly(lactide-co-glycolide) (PLGA). Additionally, changing the chain arrangement of PEG from linear chains to more complex geometries (3-arm, 4-arm, Y-shaped, comb-like and dendritic-like) will also have a significant impact on gel properties. For example, the star-shaped or branched arrangement of PEG chains enables the formation of higher modulus and chemically tunable PEG hydrogels, which are beneficial to promote desirable cellular responses.
Our PEG Solutions for Tissue Engineering
BOC Sciences develops services for crosslinking chemistry and/or chain structure modification of PEG starting materials to enhance the performance of PEG and PEG derivatives in tissue engineering or cell delivery. We have the capability to synthesize PEG-containing amphiphilic block and graft copolymers of various structures to support customers' applications in advanced bone engineering, polymeric scaffolds and drug delivery.
- Synthesis of PEG block copolymer
- Synthesis of PEG graft copolymer
- Synthesis of amphiphilic PEG polymer films
- Synthesis of amphiphilic PEG polymer hydrogels
- Synthesis of amphiphilic PEG polymer micelles
- Degradability detection of PEG copolymer
PEGylation Verification Capabilities
- Determination of PEG content and conformation
- Molecular weight of PEGylated species
- Centralization and positioning of PEG chains
- Changes of surface element composition of conjugates before and after PEGylation
- Quantitative measurement of metal-containing PEGylated drugs or nanoparticles
- Average molecular weight and degree of PEGylation of PEGylated species
Our PEG Solution Service Workflow
Why Us?
- Rich experience in PEG and PEG derivatives
- Chemical synthesis capabilities from laboratory scale to pilot scale
- Advanced comprehensive analysis platform
- Expert project management
- Reasonable schedule and cost
- High-quality products and detailed reports
The degradability, injectability, and mechanical properties of PEG copolymers have expanded their applications in bone tissue engineering, polymer scaffolds, growth factor encapsulation, drug delivery, and cell delivery. PEG is also non-immunogenic and resistant to protein adsorption, making it suitable for in vivo and in vitro studies. BOC Sciences is equipped with state-of-the-art instruments to provide high-quality custom PEG synthesis. With our extensive experience, our team can carry out various PEG-based solutions, such as PEG-based drug delivery, PEG-based drug preparation, PEG-based vaccine development, and PEG-based genomics delivery. If you are interested in our PEG solutions in tissue engineering, contact us to learn more.
Why BOC Sciences?
-
Large Stock
More than 2000+ products in inventory
-
Global Delivery
Warehouses in multiple cities to ensure fast delivery
-
mg to kg
Multi specification for academic research and industrial production
-
24/7 Technical Support
Strict process parameter control to ensure product quality
Technical Support
- Aqueous Two-Phase System (ATPS) Technique
- Capillary Electrophoresis (CE) Technique
- Enzyme-linked immunosorbent assay (ELISA) Technique
- High performance liquid chromatography (HPLC) Technique
- Hydrophobic Interaction Chromatography (HIC) Technique
- PEGylated Protein Purification Techniques
- Radiolabeling Technique
- SDS-PAGE Technique
- Ultrafiltration Technique
Products
- Lipids
- PEG Derivatives by Structure
-
PEG Derivatives by Functional Group
- Acrylate/Acrylamide/Methacrylate PEG
- Aldehyde (Ald/CHO)PEG
- Alkyne PEG
- Amino PEG, PEG amine(-NH2)
- Azide PEG, Azido PEG(-N3)
- Biotin PEG
- Boc/Fmoc protected amine PEG
- Carboxylic Acid(-COOH) PEG
- Cholesterol PEG
- DBCO PEG
- DNP PEG
- DSPE PEG
- Epoxide glycidyl ether PEG
- FITC PEG
- Folate PEG
- Halide (chloride, bromide) PEG
- Hydrazide PEG
- Hydroxyl(-OH) PEG
- Maleimide(-MAL) PEG
- NHS ester PEG
- Nitrophenyl carbonate (NPC) PEG
- Norbornene PEG
- Olefin/Alkene/Vinyl PEG
- Orthopyridyl disulfide (OPSS) PEG
- Phosphate PEG
- Rhodamine PEG
- SCM PEG
- Silane PEG
- SPDP PEG
- Sulfonate (tosyl, mesyl, tresyl) PEG
- tert-Butyl protected carboxylate PEG
- Thiol(-SH) PEG
- Vinylsulfone PEG
- PEG Copolymers
-
PEG Raw Materials
- Small-molecule Polyethylene Glycol
- Polyethylene Glycol 1000
- Polyethylene Glycol 10000
- Polyethylene Glycol 1500
- Polyethylene Glycol 200
- Polyethylene Glycol 2000
- Polyethylene Glycol 20000
- Polyethylene Glycol 400
- Polyethylene Glycol 4000
- Polyethylene Glycol 600
- Polyethylene Glycol 6000
- Polyethylene Glycol 800
- Polyethylene Glycol 8000
Resources
-
Technical Information
- Aqueous Two-Phase System (ATPS) Technique
- Capillary Electrophoresis (CE) Technique
- Enzyme-linked immunosorbent assay (ELISA) Technique
- High performance liquid chromatography (HPLC) Technique
- How to Perform Polyethylene Glycol (PEG) Modification?
- Hydrophobic Interaction Chromatography (HIC) Technique
- Introduction of Polyethylene Glycol (PEG)
- Ion Exchange Chromatography (IEX) Technique
- PEG for Chemical Synthesis
- PEG for Cosmetic Application
- PEG for Drug Delivery
- PEG for Imaging Diagnosis
- PEG for Pharmaceutical Preparation
- PEG for Tissue Engineering
- PEG Purification Techniques of Plasmid DNA
- PEGylated Protein Purification Techniques
- Polyethylene Glycol (PEG) Modifier Selection Guide
- Radiolabeling Technique
- SDS-PAGE Technique
- Size Exclusion Chromatography (SEC) Technique
- Ultrafiltration Technique
-
Industry News
- Applications of PEG-DSPE: Drug Carriers and Drug Delivery
- Applications of Polyethylene Glycol (PEG) as Medical Devices
- Cholesterol: Definition, Structure, Synthesis, Types and Functions
- Classification of Lipid-Based Vaccine Adjuvants
- FDA approved PEGylated Products
- FDA-Approved Antibody-Drug Conjugates up to 2024
- How are Liposomes Different from Micelles?
- How Lipid Nanoparticles (LNPs) Deliver RNA Drugs?
- Hyaluronic Acid & PEGylated Hyaluronic Acid
- Ionizable Lipids for RNA Delivery
- Lipid Classification and Drug Delivery Systems
- Lipid Formulations: Key Absorption-Enhancing Technologies in New Drug Development
- Lipid-Drug Conjugates (LDCs) for Nanoparticle Drug Delivery
- Liposome in Drug Delivery
- Overview of Liposome Preparation Process
- PEG in Pharmaceutical Preparations (I): Solvents, Lubricants, Adhesives and More
- PEG in Pharmaceutical Preparations (II): Stabilizers, Plasticizers and Modification Materials
- PEG Linkers in Antibody Drug Conjugates and PROTACs
- PEG-DSPE Block Copolymers and Their Derivatives
- PEGylated Drugs: Definition, Structure, Classification and Benefits
- PEGylated RGD Peptides: A Promising Tool for Targeted Drug Delivery
- Pharmacokinetics and Bioanalysis of PEGylated Drugs
- Polyethylene Glycol (PEG) Modified Targeting Nanomaterials
- Preparation Method of PEG Hydrogel
- The PROTAC Technology in Drug Development
- Vaccines: Definition, History, Ingredients, Types and Mechanism of Action
- What are Lipid Excipients and Their Applications?
- What are Lipid Nanoparticles and Their Applications?
- What are Lipid-Drug Conjugates (LDCs)?
- What are Lipids?
- What are Monodispersed and Polydispersed PEGs?
- What are PEG Lipids?
- What are Phospholipids?
- What are Sterols? - Definition, Structure, Function, Examples and Uses
- What is Biotinylation and Biotinylated PEG?
- What is Click Chemistry?
- What is Hydrogel?
- What is Methoxy Polyethylene Glycol (mPEG)?
- What is Nanogels and Its Applications?
- What is the Formulation of Lipid Nanoparticles (LNPs)?
Our Feature
BOC Sciences supplies a unique variety of PEG derivatives and functional PEG polymers. Our products offer the most diverse collection of reactivity, ready-to-use functionality, and molecular weight options that you will not find anywhere else.
PEGylation of Peptides
and Proteins
Reduce the Immunogenicity of Peptide/Protein Drugs
Learn More
APPLICATIONS
PEG linkers For Drug
Improved Circulation Half-Life
Learn More
Have Customer Reviewed On Us?
Chat With Us