Trehalose-6,6'-dibehenate
* Please be kindly noted products are not for therapeutic use. We do not sell to patients.
Category | Adjuvants |
Catalog NO. | BPG-3011 |
Product Name | Trehalose-6,6'-dibehenate |
CAS | 66758-35-8 |
Molecular Formula | C56H106O13 |
Molecular Weight | 987.43 |
Ordering Information
Catalog Number | Size | Price | Stock | Quantity |
---|---|---|---|---|
BPG-3011 | 25 mg | $990 | In stock | |
BPG-3011 | 1 g | $8290 | In stock |
- Scheme Design
- Custom Synthesis
- cGMP Manufacturing
- Quality Assurance
- Product Information
- Application
- References
- Documents
- Reviews
Description | Trehalose-6,6'-dibehenate is a bioactive glycolipid and an analog of mycobacterial cord factor. Trehalose-6,6'-dibehenate is considered less toxic and an efficient vaccine adjuvant for tuberculosis. |
Synonyms | 22:0 Trehalose; D-(+)-trehalose 6,6'-dibehenate; 6,6'-didocosanoyl-α,α'-trehalose; TDB; α-D-Glucopyranoside, 6-O-(1-oxodocosyl)-α-D-glucopyranosyl, 6-docosanoate |
IUPAC Name | [(2R,3S,4S,5R,6R)-6-[(2R,3R,4S,5S,6R)-6-(docosanoyloxymethyl)-3,4,5-trihydroxyoxan-2-yl]oxy-3,4,5-trihydroxyoxan-2-yl]methyl docosanoate |
Canonical SMILES | CCCCCCCCCCCCCCCCCCCCCC(=O)OCC1C(C(C(C(O1)OC2C(C(C(C(O2)COC(=O)CCCCCCCCCCCCCCCCCCCCC)O)O)O)O)O)O |
InChI | InChI=1S/C56H106O13/c1-3-5-7-9-11-13-15-17-19-21-23-25-27-29-31-33-35-37-39-41-47(57)65-43-45-49(59)51(61)53(63)55(67-45)69-56-54(64)52(62)50(60)46(68-56)44-66-48(58)42-40-38-36-34-32-30-28-26-24-22-20-18-16-14-12-10-8-6-4-2/h45-46,49-56,59-64H,3-44H2,1-2H3/t45-,46-,49-,50-,51+,52+,53-,54-,55-,56-/m1/s1 |
InChIKey | ZLJJDBSDZSZVTF-LXOQPCSCSA-N |
Boiling Point | 945.8±65.0°C at 760 mmHg |
Purity | >99% |
Density | 1.08±0.1 g/cm3 |
Related CAS | 73078-77-0 (Deleted CAS) 160112-43-6 (Deleted CAS) |
Appearance | White solid |
Shelf Life | 1 Year |
Storage | Store at -20 °C |
Exact Mass | 986.763 |
Hygroscopic | No |
Light Sensitive | No |
Percent Composition | C 68.12%, H 10.82%, O 21.06% |
References | 1. Teng X, Tian M, Li J, Tan S, Yuan X, Yu Q, Jing Y, Zhang Z, Yue T, Zhou L, Fan X. Immunogenicity and protective efficacy of DMT liposome-adjuvanted tuberculosis subunit CTT3H vaccine. Hum Vaccin Immunother. 2015;11(6):1456-64. doi: 10.1080/21645515.2015.1037057. PMID: 25905680; PMCID: PMC4514263. PubMed ID: 25905680. 2. Rose F, Wern JE, Ingvarsson PT, van de Weert M, Andersen P, Follmann F, Foged C. Engineering of a novel adjuvant based on lipid-polymer hybrid nanoparticles: A quality-by-design approach. J Control Release. 2015 Jul 28;210:48-57. doi: 10.1016/j.jconrel.2015.05.004. Epub 2015 May 6. PMID: 25957906. PubMed ID: 25957906. 3. Derrick SC, Yabe I, Morris S, Cowley S. Induction of Unconventional T Cells by a Mutant Mycobacterium bovis BCG Strain Formulated in Cationic Liposomes Correlates with Protection against Mycobacterium tuberculosis Infections of Immunocompromised Mice. Clin Vaccine Immunol. 2016 Jul 5;23(7):638-47. doi: 10.1128/CVI.00232-16. PMID: 27226281; PMCID: PMC4933783. PubMed ID: 27226281. 4. Larrouy-Maumus G, Layre E, Clark S, Prandi J, Rayner E, Lepore M, de Libero G, Williams A, Puzo G, Gilleron M. Protective efficacy of a lipid antigen vaccine in a guinea pig model of tuberculosis. Vaccine. 2017 Mar 7;35(10):1395-1402. doi: 10.1016/j.vaccine.2017.01.079. Epub 2017 Feb 9. PMID: 28190740. PubMed ID: 28190740. 5. Hansen M, Peltier J, Killy B, Amin B, Bodendorfer B, Härtlova A, Uebel S, Bosmann M, Hofmann J, Büttner C, Ekici AB, Kuttke M, Franzyk H, Foged C, Beer-Hammer S, Schabbauer G, Trost M, Lang R. Macrophage phosphoproteome analysis reveals MINCLE-dependent and -independent mycobacterial cord factor signaling. Mol Cell Proteomics. 2019 Jan 11. pii: mcp.RA118.000929. doi: 10.1074/mcp.RA118.000929. [Epub ahead of print]...PubMed ID: 30635358. 6. Fomsgaard, A., Karlsson, I., Gram, G., Schou, C., Tang, S., Bang, P., Kromann, I., Andersen, P., Andreasen, L.V. (2011) Development and preclinical safety evaluation of a new therapeutic HIV-1 vaccine based on 18 T-cell minimal epitope peptides applying a novel cationic adjuvant CAF01. Vaccine. 29:7067-74. PubMed ID: 21767590. 7. Nordly, P., Agger, E.M., Andersen, P., Nielsen, H.M., Foged, C. (2011) Incorporation of the TLR4 agonist monophosphoryl lipid A into the bilayer of DDA/TDB liposomes: physico-chemical characterization and induction of CD8+ T-cell responses in vivo. Pharm Res. 28:553-62. PubMed ID: 21042837. 8. Gram, G.J., Karlsson, I., Agger, E.M., Andersen, P., Fomsgaard, A. (2009) A novel liposome-based adjuvant CAF01 for induction of CD8(+) cytotoxic T-lymphocytes (CTL) to HIV-1 minimal CTL peptides in HLA-A*0201 transgenic mice. PLoS One. 4:e6950. PubMed ID: 19759892. 9. Davidsen, J., Rosenkrands, I., Christensen, D., Vangala, A., Kirby, D., Perrie, Y., Agger, E.M., Andersen, P. (2005) Characterization of cationic liposomes based on dimethyldioctadecylammonium and synthetic cord factor from M. tuberculosis (trehalose 6,6'-dibehenate)-a novel adjuvant inducing both strong CMI and antibody responses. Biochim Biophys Acta. 1718:22-31. PubMed ID: 16321607. |
Reviews
If you have any suggestions or comments about mPEG-Br, please submit a review immediately.
Why BOC Sciences?
-
Large Stock
More than 2000+ products in inventory
-
Global Delivery
Warehouses in multiple cities to ensure fast delivery
-
mg to kg
Multi specification for academic research and industrial production
-
24/7 Technical Support
Strict process parameter control to ensure product quality
Products
- Lipids
- PEG Derivatives by Structure
-
PEG Derivatives by Functional Group
- Acrylate/Acrylamide/Methacrylate PEG
- Aldehyde (Ald/CHO)PEG
- Alkyne PEG
- Amino PEG, PEG amine(-NH2)
- Azide PEG, Azido PEG(-N3)
- Biotin PEG
- Boc/Fmoc protected amine PEG
- Carboxylic Acid(-COOH) PEG
- Cholesterol PEG
- DBCO PEG
- DNP PEG
- DSPE PEG
- Epoxide glycidyl ether PEG
- FITC PEG
- Folate PEG
- Halide (chloride, bromide) PEG
- Hydrazide PEG
- Hydroxyl(-OH) PEG
- Maleimide(-MAL) PEG
- NHS ester PEG
- Nitrophenyl carbonate (NPC) PEG
- Norbornene PEG
- Olefin/Alkene/Vinyl PEG
- Orthopyridyl disulfide (OPSS) PEG
- Phosphate PEG
- Rhodamine PEG
- SCM PEG
- Silane PEG
- SPDP PEG
- Sulfonate (tosyl, mesyl, tresyl) PEG
- tert-Butyl protected carboxylate PEG
- Thiol(-SH) PEG
- Vinylsulfone PEG
- PEG Copolymers
-
PEG Raw Materials
- Small-molecule Polyethylene Glycol
- Polyethylene Glycol 1000
- Polyethylene Glycol 10000
- Polyethylene Glycol 1500
- Polyethylene Glycol 200
- Polyethylene Glycol 2000
- Polyethylene Glycol 20000
- Polyethylene Glycol 400
- Polyethylene Glycol 4000
- Polyethylene Glycol 600
- Polyethylene Glycol 6000
- Polyethylene Glycol 800
- Polyethylene Glycol 8000
Resources
-
Technical Information
- Aqueous Two-Phase System (ATPS) Technique
- Capillary Electrophoresis (CE) Technique
- Enzyme-linked immunosorbent assay (ELISA) Technique
- High performance liquid chromatography (HPLC) Technique
- How to Perform Polyethylene Glycol (PEG) Modification?
- Hydrophobic Interaction Chromatography (HIC) Technique
- Introduction of Polyethylene Glycol (PEG)
- Ion Exchange Chromatography (IEX) Technique
- PEG for Chemical Synthesis
- PEG for Cosmetic Application
- PEG for Drug Delivery
- PEG for Imaging Diagnosis
- PEG for Pharmaceutical Preparation
- PEG for Tissue Engineering
- PEG Purification Techniques of Plasmid DNA
- PEGylated Protein Purification Techniques
- Polyethylene Glycol (PEG) Modifier Selection Guide
- Radiolabeling Technique
- SDS-PAGE Technique
- Size Exclusion Chromatography (SEC) Technique
- Ultrafiltration Technique
-
Industry News
- Applications of PEG-DSPE: Drug Carriers and Drug Delivery
- Applications of Polyethylene Glycol (PEG) as Medical Devices
- Cholesterol: Definition, Structure, Synthesis, Types and Functions
- Classification of Lipid-Based Vaccine Adjuvants
- FDA approved PEGylated Products
- FDA-Approved Antibody-Drug Conjugates up to 2024
- How are Liposomes Different from Micelles?
- How Lipid Nanoparticles (LNPs) Deliver RNA Drugs?
- Hyaluronic Acid & PEGylated Hyaluronic Acid
- Ionizable Lipids for RNA Delivery
- Lipid Classification and Drug Delivery Systems
- Lipid Formulations: Key Absorption-Enhancing Technologies in New Drug Development
- Lipid-Drug Conjugates (LDCs) for Nanoparticle Drug Delivery
- Liposome in Drug Delivery
- Overview of Liposome Preparation Process
- PEG in Pharmaceutical Preparations (I): Solvents, Lubricants, Adhesives and More
- PEG in Pharmaceutical Preparations (II): Stabilizers, Plasticizers and Modification Materials
- PEG Linkers in Antibody Drug Conjugates and PROTACs
- PEG-DSPE Block Copolymers and Their Derivatives
- PEGylated Drugs: Definition, Structure, Classification and Benefits
- PEGylated RGD Peptides: A Promising Tool for Targeted Drug Delivery
- Pharmacokinetics and Bioanalysis of PEGylated Drugs
- Polyethylene Glycol (PEG) Modified Targeting Nanomaterials
- Preparation Method of PEG Hydrogel
- The PROTAC Technology in Drug Development
- Vaccines: Definition, History, Ingredients, Types and Mechanism of Action
- What are Lipid Excipients and Their Applications?
- What are Lipid Nanoparticles and Their Applications?
- What are Lipid-Drug Conjugates (LDCs)?
- What are Lipids?
- What are Monodispersed and Polydispersed PEGs?
- What are PEG Lipids?
- What are Phospholipids?
- What are Sterols? - Definition, Structure, Function, Examples and Uses
- What is Biotinylation and Biotinylated PEG?
- What is Click Chemistry?
- What is Hydrogel?
- What is Methoxy Polyethylene Glycol (mPEG)?
- What is Nanogels and Its Applications?
- What is the Formulation of Lipid Nanoparticles (LNPs)?
Our Feature
BOC Sciences supplies a unique variety of PEG derivatives and functional PEG polymers. Our products offer the most diverse collection of reactivity, ready-to-use functionality, and molecular weight options that you will not find anywhere else.
PEGylation of Peptides
and Proteins
Reduce the Immunogenicity of Peptide/Protein Drugs
Learn More
APPLICATIONS
PEG linkers For Drug
Improved Circulation Half-Life
Learn More
Have Customer Reviewed On Us?
Chat With Us