Nonadecanoyl-CoA
* Please be kindly noted products are not for therapeutic use. We do not sell to patients.
Category | Acyl CoA - Saturated Fatty Acid |
Catalog NO. | BPG-3068 |
Product Name | Nonadecanoyl-CoA |
CAS | 25045-61-8 |
Molecular Formula | C40H72N7O17P3S |
Molecular Weight | 1048.02 |
- Scheme Design
- Custom Synthesis
- cGMP Manufacturing
- Quality Assurance
- Product Information
- Application
- References
- Documents
- Reviews
Description | Nonadecanoyl-CoA is a long-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of pentadecanoic acid. It is a long-chain fatty acyl-CoA and an 11,12-saturated fatty acyl-CoA. It derives from a nonadecanoic acid. It is a conjugate acid of a nonadecanoyl-CoA(4-). |
Synonyms | Nonadecanoyl coenzyme A |
IUPAC Name | S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] nonadecanethioate |
Canonical SMILES | CCCCCCCCCCCCCCCCCCC(=O)SCCNC(=O)CCNC(=O)C(C(C)(C)COP(=O)(O)OP(=O)(O)OCC1C(C(C(O1)N2C=NC3=C(N=CN=C32)N)O)OP(=O)(O)O)O |
InChI | InChI=1S/C40H72N7O17P3S/c1-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-31(49)68-24-23-42-30(48)21-22-43-38(52)35(51)40(2,3)26-61-67(58,59)64-66(56,57)60-25-29-34(63-65(53,54)55)33(50)39(62-29)47-28-46-32-36(41)44-27-45-37(32)47/h27-29,33-35,39,50-51H,4-26H2,1-3H3,(H,42,48)(H,43,52)(H,56,57)(H,58,59)(H2,41,44,45)(H2,53,54,55)/t29-,33-,34-,35+,39-/m1/s1 |
InChIKey | YUJZGRUJMWKAJF-ZOUGCNRJSA-N |
Purity | >99% |
Appearance | Powder |
Shelf Life | 1 Year |
Storage | Store at -20°C |
Exact Mass | 1099.114 |
Hygroscopic | No |
Light Sensitive | No |
Percent Composition | C 43.71%, H 7.43%, N 12.74%, O 24.75%, P 8.45%, S 2.92% |
Nonadecanoyl-CoA is a long-chain fatty acyl-CoA derivative that plays a role in lipid metabolism and energy production. Here are some key applications of Nonadecanoyl-CoA: Metabolic Research: Nonadecanoyl-CoA is used in metabolic studies to understand lipid metabolic pathways and their regulation. By analyzing its incorporation and degradation, researchers can map out specific steps in fatty acid metabolism. This helps in identifying targets for interventions in metabolic disorders, such as obesity and fatty liver disease. Biochemical Assays: In biochemical and enzymatic assays, Nonadecanoyl-CoA can serve as a substrate for enzymes involved in fatty acid elongation and desaturation processes. Its usage facilitates the study of enzyme function, specificity, and kinetics, shedding light on the biochemical pathways of fatty acid modification. These insights are critical for developing strategies to manipulate lipid biosynthesis in therapeutic and industrial applications. Signal Transduction Studies: Nonadecanoyl-CoA can be involved in examining signaling pathways related to lipid metabolism. By interacting with specific proteins or receptors, it can modulate signaling cascades that affect cell physiology and energy homeostasis. This application helps in understanding how lipid-derived signals influence cellular functions and overall organismal health. Nutritional Science: In the field of nutritional studies, Nonadecanoyl-CoA may be used to investigate the impact of dietary fats on health. Researchers can study how different fatty acids, including those derived from Nonadecanoyl-CoA, affect metabolic processes and contribute to conditions such as cardiovascular disease. These findings can help inform dietary recommendations and the development of functional foods. |
References | 1. Topolska M, Martínez-Montañés F, Ejsing CS. A Simple and Direct Assay for Monitoring Fatty Acid Synthase Activity and Product-Specificity by High-Resolution Mass Spectrometry. Biomolecules. 2020 Jan 10;10(1):E118. doi: 10.3390/biom10010118. PMID: 31936797. PubMed ID: 31936797. |
Reviews
If you have any suggestions or comments about mPEG-Br, please submit a review immediately.
Why BOC Sciences?
-
Large Stock
More than 2000+ products in inventory
-
Global Delivery
Warehouses in multiple cities to ensure fast delivery
-
mg to kg
Multi specification for academic research and industrial production
-
24/7 Technical Support
Strict process parameter control to ensure product quality
Products
- Lipids
- PEG Derivatives by Structure
-
PEG Derivatives by Functional Group
- Acrylate/Acrylamide/Methacrylate PEG
- Aldehyde (Ald/CHO)PEG
- Alkyne PEG
- Amino PEG, PEG amine(-NH2)
- Azide PEG, Azido PEG(-N3)
- Biotin PEG
- Boc/Fmoc protected amine PEG
- Carboxylic Acid(-COOH) PEG
- Cholesterol PEG
- DBCO PEG
- DNP PEG
- DSPE PEG
- Epoxide glycidyl ether PEG
- FITC PEG
- Folate PEG
- Halide (chloride, bromide) PEG
- Hydrazide PEG
- Hydroxyl(-OH) PEG
- Maleimide(-MAL) PEG
- NHS ester PEG
- Nitrophenyl carbonate (NPC) PEG
- Norbornene PEG
- Olefin/Alkene/Vinyl PEG
- Orthopyridyl disulfide (OPSS) PEG
- Phosphate PEG
- Rhodamine PEG
- SCM PEG
- Silane PEG
- SPDP PEG
- Sulfonate (tosyl, mesyl, tresyl) PEG
- tert-Butyl protected carboxylate PEG
- Thiol(-SH) PEG
- Vinylsulfone PEG
- PEG Copolymers
-
PEG Raw Materials
- Small-molecule Polyethylene Glycol
- Polyethylene Glycol 1000
- Polyethylene Glycol 10000
- Polyethylene Glycol 1500
- Polyethylene Glycol 200
- Polyethylene Glycol 2000
- Polyethylene Glycol 20000
- Polyethylene Glycol 400
- Polyethylene Glycol 4000
- Polyethylene Glycol 600
- Polyethylene Glycol 6000
- Polyethylene Glycol 800
- Polyethylene Glycol 8000
Resources
-
Technical Information
- Aqueous Two-Phase System (ATPS) Technique
- Capillary Electrophoresis (CE) Technique
- Enzyme-linked immunosorbent assay (ELISA) Technique
- High performance liquid chromatography (HPLC) Technique
- How to Perform Polyethylene Glycol (PEG) Modification?
- Hydrophobic Interaction Chromatography (HIC) Technique
- Introduction of Polyethylene Glycol (PEG)
- Ion Exchange Chromatography (IEX) Technique
- PEG for Chemical Synthesis
- PEG for Cosmetic Application
- PEG for Drug Delivery
- PEG for Imaging Diagnosis
- PEG for Pharmaceutical Preparation
- PEG for Tissue Engineering
- PEG Purification Techniques of Plasmid DNA
- PEGylated Protein Purification Techniques
- Polyethylene Glycol (PEG) Modifier Selection Guide
- Radiolabeling Technique
- SDS-PAGE Technique
- Size Exclusion Chromatography (SEC) Technique
- Ultrafiltration Technique
-
Industry News
- Applications of PEG-DSPE: Drug Carriers and Drug Delivery
- Applications of Polyethylene Glycol (PEG) as Medical Devices
- Cholesterol: Definition, Structure, Synthesis, Types and Functions
- Classification of Lipid-Based Vaccine Adjuvants
- FDA approved PEGylated Products
- FDA-Approved Antibody-Drug Conjugates up to 2024
- How are Liposomes Different from Micelles?
- How Lipid Nanoparticles (LNPs) Deliver RNA Drugs?
- Hyaluronic Acid & PEGylated Hyaluronic Acid
- Ionizable Lipids for RNA Delivery
- Lipid Classification and Drug Delivery Systems
- Lipid Formulations: Key Absorption-Enhancing Technologies in New Drug Development
- Lipid-Drug Conjugates (LDCs) for Nanoparticle Drug Delivery
- Liposome in Drug Delivery
- Overview of Liposome Preparation Process
- PEG in Pharmaceutical Preparations (I): Solvents, Lubricants, Adhesives and More
- PEG in Pharmaceutical Preparations (II): Stabilizers, Plasticizers and Modification Materials
- PEG Linkers in Antibody Drug Conjugates and PROTACs
- PEG-DSPE Block Copolymers and Their Derivatives
- PEGylated Drugs: Definition, Structure, Classification and Benefits
- PEGylated RGD Peptides: A Promising Tool for Targeted Drug Delivery
- Pharmacokinetics and Bioanalysis of PEGylated Drugs
- Polyethylene Glycol (PEG) Modified Targeting Nanomaterials
- Preparation Method of PEG Hydrogel
- The PROTAC Technology in Drug Development
- Vaccines: Definition, History, Ingredients, Types and Mechanism of Action
- What are Lipid Excipients and Their Applications?
- What are Lipid Nanoparticles and Their Applications?
- What are Lipid-Drug Conjugates (LDCs)?
- What are Lipids?
- What are Monodispersed and Polydispersed PEGs?
- What are PEG Lipids?
- What are Phospholipids?
- What are Sterols? - Definition, Structure, Function, Examples and Uses
- What is Biotinylation and Biotinylated PEG?
- What is Click Chemistry?
- What is Hydrogel?
- What is Methoxy Polyethylene Glycol (mPEG)?
- What is Nanogels and Its Applications?
- What is the Formulation of Lipid Nanoparticles (LNPs)?
Our Feature
BOC Sciences supplies a unique variety of PEG derivatives and functional PEG polymers. Our products offer the most diverse collection of reactivity, ready-to-use functionality, and molecular weight options that you will not find anywhere else.
PEGylation of Peptides
and Proteins
Reduce the Immunogenicity of Peptide/Protein Drugs
Learn More
APPLICATIONS
PEG linkers For Drug
Improved Circulation Half-Life
Learn More
Have Customer Reviewed On Us?
Chat With Us