Cholesteryl chloroformate
* Please be kindly noted products are not for therapeutic use. We do not sell to patients.
Category | Cholesterol |
Catalog NO. | BPG-3626 |
Product Name | Cholesteryl chloroformate |
CAS | 7144-08-3 |
Molecular Formula | C28H45ClO2 |
Molecular Weight | 449.1 |
- Scheme Design
- Custom Synthesis
- cGMP Manufacturing
- Quality Assurance
- Product Information
- Application
- References
- Documents
- Reviews
Description | Cholesteryl chloroformate is used in the preparation of hydrophobized chitosan oligosaccharide and can be used in the application as an efficient gene carrier. Cholesteryl chloroformate acts as an initiator in the polymerization of methyl methacrylate. Please contact us for GMP-grade inquiries. |
Synonyms | carbonochloridate; Cholest-5-en-3-ol(3.beta.)-,carbonochloridate; CHLOROFORMIC ACID CHOLESTEROL ESTER; CHOLESTERYL CHLOROFORMATE; CHOLESTEROL CHLOROFORMATE; 5-CHOLESTEN-3-BETA-OL CHLOROFORMATE; Chloroformic acid cholesteryl ester; cholest-5-ene-3-beta-yl chloro |
IUPAC Name | [(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl] carbonochloridate |
Canonical SMILES | CC(C)CCC[C@@H](C)[C@H]1CC[C@H]2[C@@H]3CC=C4C[C@H](CC[C@]4(C)[C@H]3CC[C@]12C)OC(Cl)=O |
InChI | InChI=1S/C28H45ClO2/c1-18(2)7-6-8-19(3)23-11-12-24-22-10-9-20-17-21(31-26(29)30)13-15-27(20,4)25(22)14-16-28(23,24)5/h9,18-19,21-25H,6-8,10-17H2,1-5H3/t19-,21+,22+,23-,24+,25+,27+,28-/m1/s1 |
InChIKey | QNEPTKZEXBPDLF-JDTILAPWSA-N |
Purity | >98.0%(T) |
Density | 1.05 g/cm3 |
Appearance | Crystals |
Storage | -20°C |
Pictogram(s) | Corrosive |
Signal | Danger |
Precautionary Statement Codes | P260, P264, P280, P301+P330+P331, P302+P361+P354, P304+P340, P305+P354+P338, P316, P321, P363, P405, and P501 |
Cholesteryl chloroformate, a pivotal reagent in the realms of organic chemistry and biochemistry, finds diverse applications. Here are four key applications presented with a high degree of perplexity and burstiness: Chemical Synthesis: Integral to the synthesis of intricate organic molecules, cholesteryl chloroformate plays a crucial role. Serving as a key intermediate in the creation of cholesteryl esters, pivotal in the exploration of lipid biochemistry, this reagent is indispensable in the development of various pharmaceuticals and bioactive compounds. Its versatile nature makes it a cornerstone in the intricate dance of chemical synthesis. Bioconjugation: In the intricate world of biochemistry, cholesteryl chloroformate emerges as a powerful tool for the modification and conjugation of biomolecules. Capable of reacting with amino groups on proteins and peptides to form stable carbamate linkages, this application lies at the heart of preparing immunoconjugates and other functionalized biomolecules crucial for cutting-edge research and therapeutic breakthroughs. It stands as a bridge between the world of chemicals and biology, enabling transformative advancements. Surfactant Chemistry: At the crossroads of innovation, cholesteryl chloroformate finds its place in the production of surfactants, playing a pivotal role in the formation of liquid crystals. These surfactants are not mere chemicals, but the building blocks of technologies like liquid crystal displays (LCDs) and other electronic devices. Through its application, the alignment and stability of liquid crystal phases are ensured, driving the evolution of modern display technologies. Drug Delivery Systems: A cornerstone in the landscape of drug delivery systems, cholesteryl chloroformate is instrumental in crafting lipid-based carriers. These carriers, modified with cholesteryl chloroformate, pave the way for the creation of liposomes and other nanocarriers tailored for targeted drug delivery. By enhancing the bioavailability and efficacy of therapeutic agents, these systems stand as a testament to the convergence of chemistry and pharmacology, promising new frontiers in healthcare. |
Reviews
If you have any suggestions or comments about mPEG-Br, please submit a review immediately.
Why BOC Sciences?
-
Large Stock
More than 2000+ products in inventory
-
Global Delivery
Warehouses in multiple cities to ensure fast delivery
-
mg to kg
Multi specification for academic research and industrial production
-
24/7 Technical Support
Strict process parameter control to ensure product quality
Products
- Lipids
- PEG Derivatives by Structure
-
PEG Derivatives by Functional Group
- Acrylate/Acrylamide/Methacrylate PEG
- Aldehyde (Ald/CHO)PEG
- Alkyne PEG
- Amino PEG, PEG amine(-NH2)
- Azide PEG, Azido PEG(-N3)
- Biotin PEG
- Boc/Fmoc protected amine PEG
- Carboxylic Acid(-COOH) PEG
- Cholesterol PEG
- DBCO PEG
- DNP PEG
- DSPE PEG
- Epoxide glycidyl ether PEG
- FITC PEG
- Folate PEG
- Halide (chloride, bromide) PEG
- Hydrazide PEG
- Hydroxyl(-OH) PEG
- Maleimide(-MAL) PEG
- NHS ester PEG
- Nitrophenyl carbonate (NPC) PEG
- Norbornene PEG
- Olefin/Alkene/Vinyl PEG
- Orthopyridyl disulfide (OPSS) PEG
- Phosphate PEG
- Rhodamine PEG
- SCM PEG
- Silane PEG
- SPDP PEG
- Sulfonate (tosyl, mesyl, tresyl) PEG
- tert-Butyl protected carboxylate PEG
- Thiol(-SH) PEG
- Vinylsulfone PEG
- PEG Copolymers
-
PEG Raw Materials
- Small-molecule Polyethylene Glycol
- Polyethylene Glycol 1000
- Polyethylene Glycol 10000
- Polyethylene Glycol 1500
- Polyethylene Glycol 200
- Polyethylene Glycol 2000
- Polyethylene Glycol 20000
- Polyethylene Glycol 400
- Polyethylene Glycol 4000
- Polyethylene Glycol 600
- Polyethylene Glycol 6000
- Polyethylene Glycol 800
- Polyethylene Glycol 8000
Resources
-
Technical Information
- Aqueous Two-Phase System (ATPS) Technique
- Capillary Electrophoresis (CE) Technique
- Enzyme-linked immunosorbent assay (ELISA) Technique
- High performance liquid chromatography (HPLC) Technique
- How to Perform Polyethylene Glycol (PEG) Modification?
- Hydrophobic Interaction Chromatography (HIC) Technique
- Introduction of Polyethylene Glycol (PEG)
- Ion Exchange Chromatography (IEX) Technique
- PEG for Chemical Synthesis
- PEG for Cosmetic Application
- PEG for Drug Delivery
- PEG for Imaging Diagnosis
- PEG for Pharmaceutical Preparation
- PEG for Tissue Engineering
- PEG Purification Techniques of Plasmid DNA
- PEGylated Protein Purification Techniques
- Polyethylene Glycol (PEG) Modifier Selection Guide
- Radiolabeling Technique
- SDS-PAGE Technique
- Size Exclusion Chromatography (SEC) Technique
- Ultrafiltration Technique
-
Industry News
- Applications of PEG-DSPE: Drug Carriers and Drug Delivery
- Applications of Polyethylene Glycol (PEG) as Medical Devices
- Cholesterol: Definition, Structure, Synthesis, Types and Functions
- Classification of Lipid-Based Vaccine Adjuvants
- FDA approved PEGylated Products
- FDA-Approved Antibody-Drug Conjugates up to 2024
- How are Liposomes Different from Micelles?
- How Lipid Nanoparticles (LNPs) Deliver RNA Drugs?
- Hyaluronic Acid & PEGylated Hyaluronic Acid
- Ionizable Lipids for RNA Delivery
- Lipid Classification and Drug Delivery Systems
- Lipid Formulations: Key Absorption-Enhancing Technologies in New Drug Development
- Lipid-Drug Conjugates (LDCs) for Nanoparticle Drug Delivery
- Liposome in Drug Delivery
- Overview of Liposome Preparation Process
- PEG in Pharmaceutical Preparations (I): Solvents, Lubricants, Adhesives and More
- PEG in Pharmaceutical Preparations (II): Stabilizers, Plasticizers and Modification Materials
- PEG Linkers in Antibody Drug Conjugates and PROTACs
- PEG-DSPE Block Copolymers and Their Derivatives
- PEGylated Drugs: Definition, Structure, Classification and Benefits
- PEGylated RGD Peptides: A Promising Tool for Targeted Drug Delivery
- Pharmacokinetics and Bioanalysis of PEGylated Drugs
- Polyethylene Glycol (PEG) Modified Targeting Nanomaterials
- Preparation Method of PEG Hydrogel
- The PROTAC Technology in Drug Development
- Vaccines: Definition, History, Ingredients, Types and Mechanism of Action
- What are Lipid Excipients and Their Applications?
- What are Lipid Nanoparticles and Their Applications?
- What are Lipid-Drug Conjugates (LDCs)?
- What are Lipids?
- What are Monodispersed and Polydispersed PEGs?
- What are PEG Lipids?
- What are Phospholipids?
- What are Sterols? - Definition, Structure, Function, Examples and Uses
- What is Biotinylation and Biotinylated PEG?
- What is Click Chemistry?
- What is Hydrogel?
- What is Methoxy Polyethylene Glycol (mPEG)?
- What is Nanogels and Its Applications?
- What is the Formulation of Lipid Nanoparticles (LNPs)?
Our Feature
BOC Sciences supplies a unique variety of PEG derivatives and functional PEG polymers. Our products offer the most diverse collection of reactivity, ready-to-use functionality, and molecular weight options that you will not find anywhere else.
PEGylation of Peptides
and Proteins
Reduce the Immunogenicity of Peptide/Protein Drugs
Learn More
APPLICATIONS
PEG linkers For Drug
Improved Circulation Half-Life
Learn More
Have Customer Reviewed On Us?
Chat With Us