18:1 SM (d18:1/18:1(9Z))
* Please be kindly noted products are not for therapeutic use. We do not sell to patients.
Category | Bile Acid Standards |
Catalog NO. | BPG-3117 |
Product Name | 18:1 SM (d18:1/18:1(9Z)) |
CAS | 108392-10-5 |
Molecular Formula | C41H81N2O6P |
Molecular Weight | 729.08 |
- Scheme Design
- Custom Synthesis
- cGMP Manufacturing
- Quality Assurance
- Product Information
- Application
- References
- Documents
- Reviews
Description | 18:1 SM (d18:1/18:1(9Z)) epitomizes a sphingomyelin lipid molecular entity pivotal in biomedicine; rendering therapeutics for neurological maladies and inflammation. Its indispensable involvement in cellular communication and membrane architecture underscores its significance in pharmaceutical compositions tailored for said ailments. |
Synonyms | N-oleoyl-D-erythro-sphingosylphosphorylcholine; Oleoyl Sphingomyelin; N-(9Z-octadecenoyl)-sphing-4-enine-1-phosphocholine; C18:1 Sphingomyelin; N-(9Z-octadecenoyl)-sphing-4-enine-1-phosphocholine; SM(d18:1/18:1(9Z)) |
IUPAC Name | [(E,2S,3R)-3-hydroxy-2-[[(Z)-octadec-9-enoyl]amino]octadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate |
Canonical SMILES | CCCCCCCCCCCCCC=CC(C(COP(=O)([O-])OCC[N+](C)(C)C)NC(=O)CCCCCCCC=CCCCCCCCC)O |
InChI | InChI=1S/C41H81N2O6P/c1-6-8-10-12-14-16-18-20-21-23-25-27-29-31-33-35-41(45)42-39(38-49-50(46,47)48-37-36-43(3,4)5)40(44)34-32-30-28-26-24-22-19-17-15-13-11-9-7-2/h20-21,32,34,39-40,44H,6-19,22-31,33,35-38H2,1-5H3,(H-,42,45,46,47)/b21-20-,34-32+/t39-,40+/m0/s1 |
InChIKey | NBEADXWAAWCCDG-QDDWGVBQSA-N |
Purity | >99% |
Appearance | Powder |
Shelf Life | 1 Year |
Storage | Store at -20°C |
Exact Mass | 728.583 |
Hygroscopic | No |
Light Sensitive | No |
Percent Composition | C 67.54%, H 11.20%, N 3.84%, O 13.17%, P 4.25% |
References | 1. Nazemidashtarjandi S, Vahedi A, Farnoud AM. Lipid Chemical Structure Modulates the Disruptive Effects of Nanomaterials on Membrane Models. Langmuir. 2020 Apr 20. doi: 10.1021/acs.langmuir.0c00295. Epub ahead of print. PMID: 32312045. PubMed ID: 32312045. 2. Park SY, Yang JS, Li Z, Deng P, Zhu X, Young D, Ericsson M, Andringa RLH, Minnaard AJ, Zhu C, Sun F, Moody DB, Morris AJ, Fan J, Hsu VW. The late stage of COPI vesicle fission requires shorter forms of phosphatidic acid and diacylglycerol. Nat Commun. 2019 Jul 30;10(1):3409. doi: 10.1038/s41467-019-11324-4. PubMed ID: 31363100. 3. Nguyen PA, Strub C, Lagrée M, Bertrand-Michel J, Schorr-Galindo S, Fontana A. Study of in vitro interaction between Fusarium verticillioides and Streptomyces sp. using metabolomics. Folia Microbiol (Praha). 2019 Jun 28. doi: 10.1007/s12223-019-00725-z. [Epub ahead of print]...PubMed ID: 31250362. 4. Malishev R, Nandi S, Śmiłowicz D, Bakavayev S, Engel S, Bujanover N, Gazit R, Metzler-Nolte N, Jelinek R. Interactions between BIM Protein and Beta-Amyloid May Reveal a Crucial Missing Link between Alzheimer's Disease and Neuronal Cell Death. ACS Chem Neurosci. 2019 Jun 12. doi: 10.1021/acschemneuro.9b00177. [Epub ahead of print]...PubMed ID: 31141342. 5. Holopainen M, Colas RA, Valkonen S, Tigistu-Sahle F, Hyvärinen K, Mazzacuva F, Lehenkari P, Käkelä R, Dalli J, Kerkelä E, Laitinen S. Polyunsaturated fatty acids modify the extracellular vesicle membranes and increase the production of proresolving lipid mediators of human mesenchymal stromal cells. Biochim Biophys Acta Mol Cell Biol Lipids. 2019 Jun 15;1864(10):1350-1362. doi: 10.1016/j.bbalip.2019.06.010. [Epub ahead of print]...PubMed ID: 31207356. 6. Liu X, Bu J, Zhou X, Ouyang Z. Tandem Analysis by a Dual-Trap Miniature Mass Spectrometer. Anal Chem. 2018 Nov 28. doi: 10.1021/acs.analchem.8b03958. [Epub ahead of print]. PubMed ID: 30444599. 7. Nyholm TKM, Jaikishan S, Engberg O, Hautala V, Slotte JP. The Affinity of Sterols for Different Phospholipid Classes and Its Impact on Lateral Segregation. Biophys J. 2019 Jan 22;116(2):296-307. doi: 10.1016/j.bpj.2018.11.3135. Epub 2018 Dec 6. PubMed ID: 30583790. |
Reviews
If you have any suggestions or comments about mPEG-Br, please submit a review immediately.
Why BOC Sciences?
-
Large Stock
More than 2000+ products in inventory
-
Global Delivery
Warehouses in multiple cities to ensure fast delivery
-
mg to kg
Multi specification for academic research and industrial production
-
24/7 Technical Support
Strict process parameter control to ensure product quality
Products
- Lipids
- PEG Derivatives by Structure
-
PEG Derivatives by Functional Group
- Acrylate/Acrylamide/Methacrylate PEG
- Aldehyde (Ald/CHO)PEG
- Alkyne PEG
- Amino PEG, PEG amine(-NH2)
- Azide PEG, Azido PEG(-N3)
- Biotin PEG
- Boc/Fmoc protected amine PEG
- Carboxylic Acid(-COOH) PEG
- Cholesterol PEG
- DBCO PEG
- DNP PEG
- DSPE PEG
- Epoxide glycidyl ether PEG
- FITC PEG
- Folate PEG
- Halide (chloride, bromide) PEG
- Hydrazide PEG
- Hydroxyl(-OH) PEG
- Maleimide(-MAL) PEG
- NHS ester PEG
- Nitrophenyl carbonate (NPC) PEG
- Norbornene PEG
- Olefin/Alkene/Vinyl PEG
- Orthopyridyl disulfide (OPSS) PEG
- Phosphate PEG
- Rhodamine PEG
- SCM PEG
- Silane PEG
- SPDP PEG
- Sulfonate (tosyl, mesyl, tresyl) PEG
- tert-Butyl protected carboxylate PEG
- Thiol(-SH) PEG
- Vinylsulfone PEG
- PEG Copolymers
-
PEG Raw Materials
- Small-molecule Polyethylene Glycol
- Polyethylene Glycol 1000
- Polyethylene Glycol 10000
- Polyethylene Glycol 1500
- Polyethylene Glycol 200
- Polyethylene Glycol 2000
- Polyethylene Glycol 20000
- Polyethylene Glycol 400
- Polyethylene Glycol 4000
- Polyethylene Glycol 600
- Polyethylene Glycol 6000
- Polyethylene Glycol 800
- Polyethylene Glycol 8000
Resources
-
Technical Information
- Aqueous Two-Phase System (ATPS) Technique
- Capillary Electrophoresis (CE) Technique
- Enzyme-linked immunosorbent assay (ELISA) Technique
- High performance liquid chromatography (HPLC) Technique
- How to Perform Polyethylene Glycol (PEG) Modification?
- Hydrophobic Interaction Chromatography (HIC) Technique
- Introduction of Polyethylene Glycol (PEG)
- Ion Exchange Chromatography (IEX) Technique
- PEG for Chemical Synthesis
- PEG for Cosmetic Application
- PEG for Drug Delivery
- PEG for Imaging Diagnosis
- PEG for Pharmaceutical Preparation
- PEG for Tissue Engineering
- PEG Purification Techniques of Plasmid DNA
- PEGylated Protein Purification Techniques
- Polyethylene Glycol (PEG) Modifier Selection Guide
- Radiolabeling Technique
- SDS-PAGE Technique
- Size Exclusion Chromatography (SEC) Technique
- Ultrafiltration Technique
-
Industry News
- Applications of PEG-DSPE: Drug Carriers and Drug Delivery
- Applications of Polyethylene Glycol (PEG) as Medical Devices
- Cholesterol: Definition, Structure, Synthesis, Types and Functions
- Classification of Lipid-Based Vaccine Adjuvants
- FDA approved PEGylated Products
- FDA-Approved Antibody-Drug Conjugates up to 2024
- How are Liposomes Different from Micelles?
- How Lipid Nanoparticles (LNPs) Deliver RNA Drugs?
- Hyaluronic Acid & PEGylated Hyaluronic Acid
- Ionizable Lipids for RNA Delivery
- Lipid Classification and Drug Delivery Systems
- Lipid Formulations: Key Absorption-Enhancing Technologies in New Drug Development
- Lipid-Drug Conjugates (LDCs) for Nanoparticle Drug Delivery
- Liposome in Drug Delivery
- Overview of Liposome Preparation Process
- PEG in Pharmaceutical Preparations (I): Solvents, Lubricants, Adhesives and More
- PEG in Pharmaceutical Preparations (II): Stabilizers, Plasticizers and Modification Materials
- PEG Linkers in Antibody Drug Conjugates and PROTACs
- PEG-DSPE Block Copolymers and Their Derivatives
- PEGylated Drugs: Definition, Structure, Classification and Benefits
- PEGylated RGD Peptides: A Promising Tool for Targeted Drug Delivery
- Pharmacokinetics and Bioanalysis of PEGylated Drugs
- Polyethylene Glycol (PEG) Modified Targeting Nanomaterials
- Preparation Method of PEG Hydrogel
- The PROTAC Technology in Drug Development
- Vaccines: Definition, History, Ingredients, Types and Mechanism of Action
- What are Lipid Excipients and Their Applications?
- What are Lipid Nanoparticles and Their Applications?
- What are Lipid-Drug Conjugates (LDCs)?
- What are Lipids?
- What are Monodispersed and Polydispersed PEGs?
- What are PEG Lipids?
- What are Phospholipids?
- What are Sterols? - Definition, Structure, Function, Examples and Uses
- What is Biotinylation and Biotinylated PEG?
- What is Click Chemistry?
- What is Hydrogel?
- What is Methoxy Polyethylene Glycol (mPEG)?
- What is Nanogels and Its Applications?
- What is the Formulation of Lipid Nanoparticles (LNPs)?
Our Feature
BOC Sciences supplies a unique variety of PEG derivatives and functional PEG polymers. Our products offer the most diverse collection of reactivity, ready-to-use functionality, and molecular weight options that you will not find anywhere else.
PEGylation of Peptides
and Proteins
Reduce the Immunogenicity of Peptide/Protein Drugs
Learn More
APPLICATIONS
PEG linkers For Drug
Improved Circulation Half-Life
Learn More
Have Customer Reviewed On Us?
Chat With Us